K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

Tương tự HS tự làm

21 tháng 7 2021

29 tháng 10 2023

a: ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(AC^2=4^2+3^2=25\)

=>AC=5(cm)

Xét ΔBAC vuông tại B có BH là đường cao

nên \(BH\cdot AC=BA\cdot BC\)

=>BH*5=3*4=12

=>BH=2,4(cm)

Xét ΔBAC vuông tại B có

\(sinBAC=\dfrac{BC}{AC}=\dfrac{3}{5}\)

=>\(\widehat{BAC}\simeq37^0\)

b: Xét ΔABE vuông tại A có AH là đường cao

nên \(BH\cdot BE=BA^2\)(1)

Xét ΔABC vuông tại B có BH là đường cao

nên \(AH\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)

c: Xét ΔBHC vuông tại H và ΔBFE vuông tại F có

\(\widehat{HBC}\) chung

Do đó: ΔBHC\(\sim\)ΔBFE

=>\(\dfrac{BH}{BF}=\dfrac{BC}{BE}\)

=>\(\dfrac{BH}{BC}=\dfrac{BF}{BE}\)

Xét ΔBHF và ΔBCE có

BH/BC=BF/BE

\(\widehat{HBF}\) chung

Do đó: ΔBHF\(\sim\)ΔBCE

 

13 tháng 10 2022

a: \(AB=\sqrt{3\cdot15}=3\sqrt{5}\left(cm\right)\)

\(AC=\sqrt{12\cdot15}=6\sqrt{5}\left(cm\right)\)

b: \(\dfrac{HF}{HE}=\dfrac{AE}{AF}=\dfrac{AH^2}{AB}:\dfrac{AH^2}{AC}=\dfrac{AC}{AB}=2\)

=>HF=2HE

3 tháng 4 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác EBF cân tại B nên HE = HF

Tam giác AEF vuông tại A có AH là đường trung tuyến ứng với cạnh huyền nên: HA = HE = HF = (1/2).EF (tính chất tam giác vuông)

Vậy tam giác AHF cân tại H.

6 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi I là giao điểm của AD và BC

Vì BC là đường trung trực của AD nên theo tính chất đường trung trực ta có:

BA = BD

Tam giác BAD cân tại B có BI ⊥ AD nên BI là tia phân giác của góc ABD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác EBF có BH là tia phân giác của góc EBF và BH ⊥ EF nên tam giác EBF cân tại B.