Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(cos\left(B\right)=\dfrac{AB}{BC}\)
\(\Rightarrow cos\left(30^o\right)=\dfrac{AB}{8}\Rightarrow AB=cos\left(30^o\right)\cdot8\approx6,9\left(cm\right)\)
Ta có tam giác ABC vuông tại A áp dụng định lý Py-ta-go ta có:
\(AC=\sqrt{BC^2-AC^2}=\sqrt{8^2-6,9^2}\approx4\left(cm\right)\)
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Hv : tự túc nha :
Giải :
Tam giác ABC vuông tại A => B + C = 90 độ
=> C = 90 độ - B = 90 độ - 30 = 60độ
Tam giác ABC vuông tại A , theo hệ thức giữa cạnh và góc:"
AB = \(BC.sin30=7.sin30=7\cdot\frac{1}{2}=3,5\)
AC = \(BC.sin60=7\cdot\frac{\sqrt{3}}{2}=\frac{7\sqrt{3}}{2}\)
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
a: BC=căn 6^2+8^2=10cm
BH=AB^2/BC=3,6cm
CH=10-3,6=6,4cm
sin ABC=AC/BC=4/5
=>góc ABC=53 độ
b: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
=>AE/AC=AF/AB
=>ΔAEF đồng dạng với ΔACB
c: góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
góc KAC+góc AFE
=góc AHE+góc KCA
=góc ABC+góc ACB=90 độ
=>AK vuông góc EF
\(AB=\dfrac{AC}{\tan B}=\dfrac{8}{\tan30^0}=\dfrac{8}{\dfrac{\sqrt{3}}{3}}=8\sqrt{3}\)
trên tia đối tia AC lấy điểm D sao cho AD=AC
tam giác ABD =tam giác ABC(c.g.c) =>BD=BC
tam giác BDC cân có góc C=60 độ (A=90 do;B=30do)nen la tam giac deu
Do đó BC=DC =2AC=>AC=BC :2=4cm