Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nha !!!
a) Áp dụng định lý Py-ta-go ta có
AB2 + AC2 = BC2
=> 82 + 62 = BC2
=> BC = 10 cm
b) Ta có BA = AD
=> AC là trung tuyến của BD
Vì \(AC\Omega BK=\left\{E\right\}\)
=> E là trọng tâm của tam giác BDC
=> \(\frac{EC}{AC}=\frac{2}{3};\frac{AE}{AC}=\frac{1}{3}\)mà AC = 6 cm
=> EC = 4 cm ; AE = 2 cm
c) Xét tam giác BAC và tam giác DAC có
\(\hept{\begin{cases}BA=AD\\\widehat{CAB}=\widehat{CAD=90^{\text{o}}}\\AC\text{ chung}\end{cases}}\Rightarrow\Delta BAC=\Delta DAC\left(c.g.c\right)\)
=> BC = DC (cạnh tương ứng)
a: \(AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\)
b: Xét ΔABD vuông tại A và ΔABC vuông tại A có
AB chung
AD=AC
Do đó: ΔABD=ΔABC
c: Xét ΔBDC có
BA là đường trung tuyến
DM là đường trung tuyến
BA cắt DM tại G
Do đó: G là trọng tâm
=>BG=2/3BA=6(cm)
áp dụng định lý Pi-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\)
\(BC^2-AB^2=AC^2\)
\(15^2-9^2=AC^2\)
\(144=AC^2\)
\(AC=12\)(cm)
b)Có BC<AC<AB
=>A<B<C
c) xét tam giác CAB và tam giác CAD có :
CA chung
DA=AB
góc CAB= gócCAD=90 độ
=>tam giác CAB=tam giác CAD(2 cạnh góc vuông)
=>CB=CD(2 cạnh tương ứng )
=>tam giác BCD cân
d) vì A là trung điểm BD=>DA=DB=>CA là đường trung tuyến DB (1)
có K là trung điểm cạnh BC=>KB=KC=\(\frac{1}{2}\)BC=\(\frac{15}{2}\)=7,5 (cm) (2)
Từ (1) và(2)=>CA =CK=7,5(cm)(trong 1 tam giác vuông đường trung tuyến bằng 1 nửa cạnh huyền)
Từ (1) =>CM=\(\frac{2}{3}\)CA
=>CM=\(\frac{2}{3}\times7,5\)
=>CM=5(cm)
a) Ta có: AC2+BC2=82+152=289
AB2=172=289
=> AC2+BC2=AB2
=> \(\Delta ABC\)vuông tại C (theo định lý Py-ta-go đảo)
=> đpcm
b) Ta có \(\Delta ACD\)vuông tại C
=> AC2+DC2=AD2
= 82+62= 100
=> AD=\(\sqrt{100}\)=10(cm)
=> Chu vi \(\Delta ABD\)là:
AD+AB+DC+CB=10+6+15+17=48(cm)
Vậy....
a)Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) (ĐL Pytago)
\(5^2=3^2+AC^2\)
25=9+\(AC^2\)
25-9=\(AC^2\)
\(AC^2\)=16
Vậy...
b)góc BAC=góc DAC(2 góc này ở vị trì kề bù)
Xét tam giác BAC và tam giác DAC có:
BC=AD(gt)
góc BAC=góc DAC(cmt =90độ )
AC cạnh chung
\(\Rightarrow\Delta ABC=\Delta ADC\)(2 cgv)
\(\Rightarrow BC=DC\)(..)(1)
và góc B= góc D(...)(2)
Từ (1) và(2)có tam giác BCD cân tại C
Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.
a, Tính độ dài cạnh BC của tam giác ABC.
b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.
c, Chứng minh CB = CD.
* Hình tự vẽ
a)
Áp dụng định lý Pytago ta tính được cạnh huyền BC = 10cm
b)
Xét tam giác DBC, ta có:
BK là trung tuyến ứng với cạnh CD ( gt )
CA là trung tuyến ứng với cạnh BD ( AB = AD )
BK giao với CA tại E
=> E là trọng tâm của tam giác BDC
=> CE = \(\frac{2AC}{3}\)= 4cm ; AE = 2cm
c)
Xét tam giác BDC, ta có:
CA là trung tuyến ứng với cạnh BD
CA là đường cao ứng với cạnh BD
=> Tam giác BDC cân tại C
=> CB = CD
Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC
B A C
Theo đề ra: Góc A = 50 độ
Góc B = 60 độ
Góc C = 70 độ
=> Góc A < góc B < góc C
=> BC < AC < AB ( quan hệ giữa góc và cạnh đối diện trong một tam giác )
a, ta có:
BC2=AB2+AC2
thay 152=92+AC2
225=81+AC2
AC2=144
AC=12
Vậy cạnh AC=12cm
Mà AC > AB(vì 12>9)
=>góc ABC > góc ACB(Đ/lí góc đối diện vs cạnh lớn hơn)
b,ta có:BA=DA(vì A là trung điểm của BD)
xét tam giác BCA và tam giácDCA
có:BA=DA(C/m trên)
góc BAC=góc DAC (=900)
AC là cạnh chung
=>tam giác BCA=tam giác DCA(c.g.c)
=>BC=DC(2 cạnh t/ứng)
=>tam giác BDC cân tại C
mk chỉ làm đc thế thôi
ok
hình bn tự vẽ nhé,mk ko biết vẽ hình trên đây:
a) Xét tam giác ABC vuông ở A có:
AB2+AC2=BC2 (đ/l pytago)
=>AC2=BC2-AB2=152-92=144
=>AC=12(cm)
Vì AC>AB (12cm>9cm)
=>^ABC>^ACB (đ/l về góc đối diện.....)
b Vì AB _|_ AC (tam giác ABC vuông tại A)
mà AD là tia đối tia AB=>AD _|_ AC
Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A có:
AC:cạnh chung
AB=AD (A là trung điểm của BD)
=>tam giác ABC=tam giác ADC (2 cạnh góc vuông)
a. Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A, ta có:
BC2=AB2+AC2
152 = 92 +AC2
AC2 =152-92=144
AC=12 (cm)
Xét tam giác ABC: AC > AB (12 cm >9cm)
=> góc ABC>góc ACB ( quan hệ giữa góc và cạnh đối diện)
b. Ta có: góc BAC + góc DAC = 180* ( hai góc kề bù)
90* + góc DAC = 180*
=> góc DAC =180*-90*=90*
=> tam giác ADC vuông tại A.
Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A, ta có:
AB = AD (A là trung điểm của BD)
AC là cạnh chung
=> tam giác ABC= tam giác ADC ( hai cạnh góc vuông)
=> BC = DC ( hai cạnh tương ứng)
=> tam giác BDC cân tại C.
c. A là trung điểm của BD => CA là đường trung tuyến của tam giác BDC.
K là trung điểm của BC => DK là đường trung tuyến của tam giác BDC.
CA cắt t DK tại M=> M là trọng tâm của tam giác BDC.
=> CM =2/3CA
CM =2/3.12
CM = 8 (cm)
Vậy CM=8 cm