Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=164\)
hay \(BC=2\sqrt{41}cm\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{32\sqrt{41}}{41}cm\\CH=\dfrac{50\sqrt{41}}{41}cm\\AH=\dfrac{40\sqrt{41}}{41}cm\end{matrix}\right.\)
a) Các hệ thức giữa cạnh và đường cao AH:
\(AH^2=BH.CH\)
\(AB^2=BH.BC\)
\(AC^2=CH.BC\)
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(AH.BC=AB.AC\)
b) Áp dụng HTL trong tam giác ABC vuông tại A có đg cao AH:
\(AH.BC=AB.AC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
Ta có: \(AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
\(BC=CH+BH\)
\(\Rightarrow CH=BC-BH=10-3,6=6,4\left(cm\right)\)
Theo định lý Pytago
\(AB^2+AC^2=BC^2\\ \Rightarrow AC=\sqrt{10^2-8^2}=6\left(cm\right)\)
Tam giác ABC vuông tại A , đg cao AH
\(AB^2=BH.BC\\ \Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{8^2}{10}=\dfrac{32}{5}\left(cm\right)\\ AC^2=HC.BC\\ \Rightarrow HC=\dfrac{AC^2}{BC}=\dfrac{6^2}{10}=\dfrac{18}{5}\left(cm\right)\)
\(AB.AC=AH.BC\\ \Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=\dfrac{24}{5}\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-8^2=36\)
=>\(AC=\sqrt{36}=6\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{8^2}{10}=6.4\left(cm\right)\\CH=\dfrac{6^2}{10}=3.6\left(cm\right)\\AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\end{matrix}\right.\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
\(BC=BH+CH=52\left(cm\right)\)
\(AH=\sqrt{BH.CH}=2\sqrt{105}\) (cm)
\(AB^2=BH.BC\Rightarrow AB=\sqrt{BH.BC}=2\sqrt{130}\left(cm\right)\)
\(AC^2=CH.BC\Rightarrow AC=\sqrt{CH.BC}=2\sqrt{546}\left(cm\right)\)
Ta có: BC=BH+CH
nên BC=10+42=52cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{105}cm\\AB=2\sqrt{130}cm\\AC=2\sqrt{546}cm\end{matrix}\right.\)
Hình tự vẽ nha
Xét tam giác ABC vuông tại A có AH là đg cao
=> \(AC^2=BC.HC\)( hệ thức lượng trong tam giác vuông)
⇔\(10^2=BC.8\)
=> BC = 12,5
Ta có BC = HC + BH
T/s 12,5 = 8 + BH
=> BH= 4,5
Xét tam giác ABC vuông tại có
\(AB^2+AC^2=BC^2\)( định lý PYtago)
T/s \(AB^2+10^2=12,5^2\)
⇔ \(AB^2=12,5^2-10^2\)
⇔ \(AB^2=56,25\)
⇔\(AB=7,5\)
Xét ΔABC vuông tại A(gt)
=>\(BC^2=AB^2+AC^2\)(theo định lý ptago)
=>\(BC^2=10^2+8^2=164\)
=>\(BC\approx12,8\)
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{8^2}{12,8}=5\)
\(AC^2=HC\cdot BC\Rightarrow HC=\frac{AC^2}{BC}=\frac{10^2}{12,8}\approx7,8\)
Áp dụng hệ thức liên quan tới đường cao ta có:
\(AH^2=BH\cdot CH=5\cdot7,8=39\)
\(\Rightarrow AH\approx6,2\)