Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆BAD và ∆ACE có:
^BDA=^AEC (cùng bằng 90 độ)
AB=AC (gt)
^BAD=^ACE (cùng phụ với ^EAC)
suy ra ∆BAD=∆ACE (cạnh huyền-góc nhọn)
b) Do ∆BAD=∆ACE nên AD=CE và AE=BD
mà DE=DA+AE
suy ra DE = CE+BD (đpcm)
Bài 2)
a) Xét ∆AOD và ∆COB có:
^OAD=^OCB(so le trong)
AD=BC(gt)
^ADO=^CBO(so le trong)
suy ra ∆AOD=∆COB (g-c-g)
do đó OA=OC (hai cạnh tương tứng)
b)
Xét ∆AEO và ∆COF có:
^EAO=^OCF (so le trong)
OA=OC (c/m trên)
^AOE=^COF (đối đỉnh)
suy ra ∆AEO=∆COF (g-c-g)
do đó OE=OF (hai cạnh tương ứng)
Câu hỏi của Nhàn Lê - Toán lớp 7 - Học toán với OnlineMath . Tham khảo nhé
Bạn tự vẽ hình giùm mình nhé!
a) Xét tam giác BAD và tam giác ACE có:
AB = AC (gt)
BDA = CEA =1V
DBA = EAC (vì cùng phụ với DAB)
Nên tam giác BAD = tam giác ACE (chgn)
b) Từ c/m a, có: tam giác BAD bằng tam giác ACE => AD=EC; AE=DB
=> DE = DA + AE= EC+BD (đpcm)
a) Xét tam giác BAD và tam giác ACE có : AB = AC (gt)
BDA = CEA = 90o
Góc DBA = Góc EAC (vì cùng phụ với DAB)
Vậy tam giác BAD = tam giác ACE (ch - gn)
giải a, DA=DE(2 cạnh tương ứng) DB=AE(2 cạnh tương ứng) Mà DE=DB+CE =>DE=DB=CE(điều phải chứng minh)