Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BẠN TỰ VẼ HÌNH NHÉ !
TAM GIÁC ABC =TAM GIÁC DBC (c.c.c) Bạn tự CM
\(\Rightarrow\widehat{A}=\widehat{D}=90\)
MÀ AK \(\\ \)BD \(\Rightarrow\widehat{D}+\widehat{DKA}=180\)(TRONG CÙNG PHÍA )
\(\Rightarrow\) \(\widehat{DKA}=90\)
\(\Rightarrow\) TAM GIÁC DKA VUÔNG TẠI K ( 1)
MÀ AH=HD \(\Rightarrow\)HK LÀ ĐƯỜNG TRUNG TUYẾN CỦA TAM GIÁC DKA ứng với cạnh huyền AD (2)
ĐỊNH LÝ : TRONG TAM GIÁC VUÔNG ĐƯỜNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN = 1 NỬA CẠNH ẦY (3)
Từ 1;2;3 \(\Rightarrow\)\(HK=\frac{1}{2}AD\)
KO CHẮC CHẮN LẮM ĐÂU NHA !
a) Δ BID và Δ CIA có:
ID=IB (gt)
DIB=CIA (đối đỉnh)
IA=ID (gt)
=> Δ BID=Δ CIA (c.g.c)
b) Ta có: AM // BC
=> MAB=CAB (so le trong)
Δ BID=Δ CIA (cmt)
=> BDI=CAI ( 2 góc tương ứng)
và chúng ở vị trí so le trong
=> CA // DM
Ta có: CA // DM (cmt)
=> CAB=MBA=900 (so le trong)
Δ BAM và Δ ABC có:
MAB=CAB (cmt)
BA cạnh chung
CAB=MBA=900 (cmt)
=> Δ BAM=Δ ABC (g.c.g)
c)Δ BAM=Δ ABC
=> BM=AC (2 cạnh tương ứng)
Mà AC=BD ( Δ BID=Δ CIA)
=>BM=BD
MBA=900 (cmt)
mà MBA+ABD=1800 ( kề bù)
900 +ABD=1800
=>ABD=1800-900=900
=>MBA=ABD
Δ ADB=Δ AMB có:
BM=BD (cmt)
MBA=ABD (cmt)
AB cạnh chung
=> Δ ADB=Δ AMB ( g.c.g)
=>MAB=DAB (2 góc tương ứng)
Vậy AB là phân giác góc DAM
Bạn ơi, vì mình k thể kí hiệu góc. Nên bạn tự ghi góc vào bài làm của mình nhé
a) Xét ∆ADC có :
CH là trung tuyến AD ( AH = HD )
CH là đường cao
=> ∆ADC cân tại C
=> CH là phân giác DCA
Hay CB là phân giác DCA
b) Xét ∆ vuông BHA và ∆ vuông DHE ta có :
BHA = DHE
HA = HD
=> ∆BHA = ∆DHE (cgv-gn)
=> BAH = HDE
Mà 2 góc này ở vị trí so le trong
=> BA//DE
c) Chứng minh DKA = 90°
=> HK = HD = HA ( tính chất )
=> HK = \(\frac{1}{2}\:AD\)