Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
b: Xét ΔCAB vuông tại A và ΔCAI vuông tại A có
CA chung
AB=AI
Do đó: ΔCAB=ΔCAI
=>CB=CI
=>ΔCBI cân tại C
c: Ta có; ΔCAB=ΔCAI
=>\(\widehat{ACB}=\widehat{ACI}\)
Xét ΔCMA vuông tại M và ΔCNA vuông tại N có
CA chung
\(\widehat{MCA}=\widehat{NCA}\)
Do đó: ΔCMA=ΔCNA
d: Ta có: ΔCMA=ΔCNA
=>CM=CN
Xét ΔCIB có \(\dfrac{CM}{CI}=\dfrac{CN}{CB}\)
nên MN//IB
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
b: Ta có: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
Ta có: I là trung điểm của BC
nên IB=IC=3cm
=>AI=4cm
Sorry, bạn tự vẽ hình nha!
a.
Tam giác ABC cân tại A có:
\(B=C=\frac{180-A}{2}=\frac{180-80}{2}=\frac{100}{2}=50\)
b.
Xét tam giác ABD và tam giác ACE có:
AB = AC (tam giác ABC cân tại A)
B = C (tam giác ABC cân tại A)
BD = CE (gt)
=> Tam giác ABD = Tam giác ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE cân tại A
c.
Xét tam giác HAD vuông tại H và tam giác KAE vuông tại K có:
AD = AE (tam giác ADE cân tại A)
A1 = A2 (tam giác ABD = tam giác ACE)
=> Tam giác HAD = Tam giác KAE (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
a: Xét ΔANB và ΔANC có
AN chung
NB=NC
AB=AC
Do đó: ΔANB=ΔANC
b: Ta có: ΔABC cân tại A
mà AN là đường trung tuyến
nên AN là đường cao
c: Ta có: ΔANC vuông cân tại N
mà ND là đường cao
nên ND là đường trung tuyến
=>ND=AD
=>ΔAND vuông cân tại D
hay \(\widehat{AND}=45^0\)
Đúng không ạ.