K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

a )

Xét tam giác ABC và tam giác HAB , có :

\(\widehat{A}\)=\(\widehat{H}\)= 900

\(\widehat{B}\): góc chung

=> tam giác CBA ~ tam giác ABH ( g.g)

=> \(\dfrac{AB}{BH}\)=\(\dfrac{BC}{AB}\)

=> AB2 = BH . BC

b) ADĐL pitago vào tam giác vuông ABC , có :

AB2 + AC2 = BC2

62 + 82 = BC2

BC2 = 100

=> BC = 10cm

Vì AK là phân giác của góc A nên ta có :

\(\dfrac{AB}{AC}\)= \(\dfrac{BK}{KC}\)

=> \(\dfrac{6}{8}\)= \(\dfrac{BK}{10-BK}\)

=> 6 ( 10 - BK ) = 8BK

=> BK = \(\dfrac{30}{7}\)

Ta có : BK + CK = BC

=> \(\dfrac{30}{7}\)+ CK = 10

=> CK = \(\dfrac{40}{7}\)

c) Xét tam giác ABD và tam giác BIH , có :

\(\widehat{A}\)=\(\widehat{H}\)= 900 \

\(\widehat{B_1}\)= \(\widehat{B_2}\)( BD là phân giác )

=> tam giác ABD ~ tam giác HBI ( g.g)

=> \(\dfrac{AB}{HB}\)= \(\dfrac{DB}{BI}\)

=. AB.BI = BD . HB

d) Vì tam giác CBA ~ tam giác ABH ( câu a ) :

=> \(\dfrac{CB}{AB}\)= \(\dfrac{AC}{AH}\)

=> \(\dfrac{10}{6}\)= \(\dfrac{8}{AH}\)

=> AH = 4,8 cm

ADĐL pitago vào tam giác vuông AHB , có :

BH2 + AH2 = AB2

BH2 + 4,82 = 62

BH2 = 12,96

=> BH = 3,6 cm

SAHB = \(\dfrac{1}{2}\). 4,8 . 3,6 = 8,64 cm2

3 tháng 8 2018

a, áp dụng đ/lý pytago vào tam giác ABC có A =90 độ

BC2=AB2+AC2BC2=AB2+AC2

BC2=62+82=100BC2=62+82=100

BC=10BC=10

b, Xét tam giác ABC và tam giác AHB có

góc BAC=góc BHA=90độ

b góc chung

=> tam giác ABC đồng dạng với tam giác HBA ( gg)

c => ABHB=ABHB=BCBABCBA => AB2=HB.BC

12 tháng 5 2018

a) Xét  \(\Delta BAH\) và      \(\Delta BCA\)có:

         \(\widehat{B}\) chung

        \(\widehat{BHA}=\widehat{BAC}=90^0\)

suy ra:   \(\Delta BAH~\Delta BCA\)  (g.g)

\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\)

\(\Rightarrow\)\(AB^2=BH.BC\)

c)  Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

      \(AB^2+AC^2=BC^2\)

\(\Rightarrow\)\(BC=10\)

\(\Delta ABC\)có  AK  là phân giác  

\(\Rightarrow\)\(\frac{KB}{AB}=\frac{KC}{AC}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

    \(\frac{KB}{AB}=\frac{KC}{AC}=\frac{KB+KC}{AB+AC}=\frac{5}{7}\)

suy ra:  \(KB=\frac{30}{7}\)     \(KC=\frac{40}{7}\)

c) Xét  \(\Delta ABD\)và   \(\Delta HBI\)có:

    \(\widehat{ABD}=\widehat{HBI}\) (gt)

   \(\widehat{BAD}=\widehat{BHI}=90^0\)

suy ra:  \(\Delta ABD~\Delta HBI\)

\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BD}{BI}\)

\(\Rightarrow\)\(AB.BI=BD.HB\)

d)    \(S_{ABC}=\frac{1}{2}.AB.AC=24\)

 \(\Delta ABH~\Delta CBA\) (câu a)

\(\Rightarrow\)\(\frac{S_{ABH}}{S_{CBA}}=\left(\frac{AB}{BC}\right)^2=\frac{9}{16}\)

\(\Rightarrow\)\(S_{ABH}=\frac{9}{16}.S_{ABC}=13,5\)

12 tháng 5 2018

â) chứng minh AB2 = BH . BC 

 Xét : \(\Delta ABHva\Delta ABC,co\):

       \(\widehat{B}\) là góc chung 

       \(\widehat{A}=\widehat{H}=90^o\)

Do do : \(\Delta ABH~\Delta ABC\left(g-g\right)\)

=> \(\frac{AB}{HB}=\frac{BC}{AB}\) (tỉ lệ tương ứng của 2 tam giác đồng dạng ) 

=> AB . AB = BH . BC

=> AB2       = BH . BC 

b)

28 tháng 3 2021

e) \(AH\perp BC\)(giả thiết).

\(\Rightarrow\Delta HAB\)vuông tại H.

\(\Rightarrow S_{HAB}=\frac{AH.BH}{2}=4,8.\frac{30}{14}=\frac{144}{14}=\frac{72}{7}\left(cm^2\right)\)

Xét \(\Delta ABC\)có phân giác BD (giả thiết).

\(\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}\)(tính chất).

\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{BC+AB}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+AB}\)

\(\Rightarrow\frac{AD}{8}=\frac{6}{10+6}=\frac{6}{16}=\frac{3}{8}\)(thay số).

\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)

Vì \(\Delta ABC\)vuông tại A (giả thiết).

\(\Rightarrow\widehat{CAB}=90^0\Rightarrow\widehat{DAB}=90^0\)

\(\Rightarrow\Delta ADB\)vuông tại A.

\(\Rightarrow S_{ADB}=\frac{AD.AB}{2}=\frac{3.6}{2}=9\left(cm^2\right)\)

Ta có: \(S_{ABC}=\frac{AB.AC}{2}\)(theo câu a))

\(\Rightarrow S_{ABC}=\frac{6.8}{2}=\frac{48}{2}=24\left(cm^2\right)\)

Lại có: \(S_{ABD}+S_{BCD}=S_{ABC}\)

\(\Rightarrow9+S_{BCD}=24\)(thay số).

\(\Rightarrow S_{BCD}=24-9=15\left(cm^2\right)\)

Vậy \(S_{HAB}=\frac{72}{7}cm^2;S_{BCD}=15cm^2\)

28 tháng 3 2021

A B C H E D I

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc ABH chung

=>ΔABH đồng dạng với ΔCBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=8/8=1

=>AD=3cm; CD=5cm

c: Xét ΔBHI vuông tại H và ΔBAD vuông tại A có

góc HBI=góc ABD

=>ΔBHI đồng dạng với ΔBAD

=>BH/BA=BI/BD

=>BH*BD=BA*BI

21 tháng 3 2021

A B C 6 8 H D I

a, Xét tam giác ABC vuông tại A, có AH là đường cao 

Áp dụng định lí Py ta go ta có : 

\(BC^2=AB^2+AC^2=36+64\)

\(\Rightarrow BC^2=100\Rightarrow BC=10\)cm 

Vì BD là phân giác ^ABC nên 

\(\frac{AB}{BC}=\frac{AD}{DC}\)(1) mà \(AD=AC-DC=8-DC\)

hay \(\frac{6}{10}=\frac{8-DC}{DC}\Rightarrow6DC=80-10DC\)

\(\Leftrightarrow16DC=80\Leftrightarrow DC=5\)cm 

\(\Rightarrow AD=AC-DC=8-5=3\)cm 

b, Xét tam giác BHA và tam giác BAC ta có 

^BHA = ^A = 900

^B _ chung 

Vậy tam giác BHA ~ tam giác BAC ( g.g )

\(\Rightarrow\frac{BH}{BA}=\frac{AB}{BC}\) ( tỉ số đồng dạng ) (2) 

Từ (1) và (2) \(\Rightarrow\frac{BH}{BA}=\frac{AD}{DC}\)(3)

xem lại đề đi nếu như thành \(\frac{IH}{AD}=\frac{IA}{DC}\)

sao lại có tam giác IHA được ? hay còn cách nào khác ko ? 

23 tháng 3 2021

cần phần c

 

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ sốbằng nhau, ta được:

AD/3=CD/5=(AD+CD)/(3+5)=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

Do đó:ΔBAD đồng dạng với ΔBHI

Suy ra: BA/BH=BD/BI

hay \(BA\cdot BI=BH\cdot BD\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

hay ΔAID cân tại A

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{6}=\dfrac{CD}{10}\)

=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)

mà AD+CD=AC=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)

=>\(AD=3\cdot1=3\left(cm\right);DC=5\cdot1=5\left(cm\right)\)

b: Xét ΔBAH có BI là phân giác

nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\left(1\right)\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\left(2\right)\)

Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

góc ABH chung

Do đó: ΔBHA~ΔBAC

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)

c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

\(\widehat{ABD}=\widehat{HBI}\)

Do đó: ΔBAD~ΔBHI

=>\(\dfrac{BA}{BH}=\dfrac{BD}{BI}\)

=>\(BA\cdot BI=BD\cdot BH\)

Ta có: ΔBAD~ΔBHI

=>\(\widehat{BDA}=\widehat{BIH}\)

mà \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)

nên \(\widehat{ADI}=\widehat{AID}\)

=>ΔAID cân tại A

b) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(Gt)

nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\)(Tính chất đường phân giác của tam giác)(1)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\)(Tính chất đường phân giác của tam giác)(2)

Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔABH∼ΔCBA(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{BH}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)(đpcm)

9 tháng 3 2022

Dành cho anh em nào cần phần C nha

Xét ∆HIB và ∆AID có:

Góc IHB= góc IAD

     Góc I( đối đỉnh)

Suy ra ∆HIB đồng dạng vs ∆ AID

Suy ra góc HBI = ADI

Mà tâm giác BIH vuông tại H nên Góc HBI = BIH

Mà hai góc I đối đỉnh nên góc HBI = AID 

Mà góc HBI = ADI 

Nên góc ADI = góc AID 

Suy ra tâm giác AID cân (đpcm) (hơi dài nhỉ nhưng có cách ngắn nhưng nó sẽ không chi tiết mong ae thông cảm )

 

 

 

 

18 tháng 5 2021

ez

 

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ sốbằng nhau, ta được:

AD/3=CD/5=(AD+CD)/(3+5)=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

Do đó:ΔBAD đồng dạng với ΔBHI

Suy ra: BA/BH=BD/BI

hay \(BA\cdot BI=BH\cdot BD\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

hay ΔAID cân tại A

a: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

S ABC=1/2*6*8=3*8=24cm2

Xet ΔABC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5=8/8=1

=>AD=3cm; CD=5cm

 

b: Xét ΔABC vuông tại A và ΔHCA vuông tại H co

góc C chung

=>ΔABC đồng dạngvới ΔhAC

c: IH/IA=BH/BA

AD/DC=BA/BC

mà BH/BA=BA/BC

nên IH/IA=AD/DC

d:

góc AID=góc BIH=góc ADB=góc ADI

=>ΔADI can tại A