Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ABD và ∆EBD ta có :
BD chung
góc BAD = góc BED ( = 90 độ)
góc ABD = góc EBD ( gt)
=> ∆ABD=∆EBD ( ch-gn)
b) Xét tam giác vuông ABC ta có :
Góc A = 90 độ, góc C = 30 độ
Mà góc A + góc C + góc B = 180 độ
=> góc B = 180 - 90 - 30 = 60 độ (1)
Xét tam giác ABE ta có :
BA = BE ( vì ∆ABD=∆EBD) => tam giác ABE cân tại B
Mà góc B = 60 độ => Tam giác ABE là tam giác đều ( trong tam giác cân, một góc = 60 độ thì tam giác đó là tam giác đều )
a) Xét `∆ABD` và `∆EBD` ta có :
`BD` chung
`hat (BAD) = hat (BED) ( = 90^o)`
`hat(ABD) = hat (EBD)`
`=> ∆ABD=∆EBD ( ch-gn)`
b) Xét tam giác vuông `ABC` ta có :
`Hat A = 90 độ, hatC = 30 độ`
Mà `hat (A) + hat (C) + hat (B) = 180^o`
`=> hat(B) = 180 - 90 - 30 = 60 độ (1)`
Xét tam giác ABE ta có :
`BA = BE ( vì ∆ABD=∆EBD) =>` ` triangle ABE `cân tại B
Mà `hat(B)= 60 độ => triangle ABC` là tam giác đều
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE
Xét ΔBAE có BA=BE và góc ABE=60 độ
nên ΔBAE đều
c; Xét ΔABC vuông tại A có cos B=AB/BC
=>5/BC=1/2
=>BC=10cm
1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
2: Ta có: ΔABD=ΔEBD
nên BA=BE
hay ΔABE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔABE đều
3: Xét ΔABC vuông tại A có
\(\cos B=\dfrac{AB}{BC}=\dfrac{5}{BC}\)
=>BC=10(cm)
1/ Chứng minh: ΔΔABD = ΔΔEBD
Xét ΔΔABD và ΔΔEBD, có:
ˆBAD=ˆBED=900BAD^=BED^=900
BD là cạnh huyền chung
ˆABD=ˆEBDABD^=EBD^ (gt)
Vậy ΔΔABD = ΔΔEBD (cạnh huyền – góc nhọn)
2/ Chứng minh:ΔΔABE là tam giác đều.
ΔΔABD =ΔΔEBD (cmt)
=> AB = BE
mà ˆB=600B^=600 (gt)
Vậy ΔΔABE có AB = BE và nên ΔΔABE đều.
3/ Tính độ dài cạnh BC
Ta có : Trong ΔΔ ABC vuông tại A có ˆA+ˆB+ˆC=1800A^+B^+C^=1800
mà ˆA=900;ˆB=600(gt)A^=900;B^=600(gt) => ˆC=300C^=300
Ta có : ˆBAC+ˆEAC=900BAC^+EAC^=900 (ΔΔABC vuông tại A)
Mà ˆBAE=600BAE^=600(ΔΔABE đều) nên ˆEAC=300EAC^=300
Xét ΔΔEAC có ˆEAC=300EAC^=300 và ˆC=300C^=300 nên ΔΔEAC cân tại E
=> EA = EC mà EA = AB = EB = 5cm
Do đó EC = 5cm
Vậy BC = EB + EC = 5cm + 5cm = 10cm
a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD
Suy ra góc ABD = góc EBD
Vậy tam giác ABD = tam giác EBD
b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )
Suy ra tam giác ABE cân tại B
Tam giác ABE cân tại B có góc EBA =60 độ
Suy ra tam giác ABE là tam giác đều
c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ
Suy ra ACB = 30 độ
Suy ra tam giác ABC là nửa tam giác đều
Suy ra AB = 1/2 BC
Suy ra BC = 2AB = 2 . 5 = 10 cm
Vẽ xấu nhưng xem tạm thôi nhé!
a)Xét \(\Delta\)ABD (\(\widehat{A}=90^0\) )và \(\Delta\)EBD (\(\widehat{E}=90^0\))
Ta có:BD là cạnh chung (1)
\(\widehat{ABD}=\widehat{EBD}\) (gt) (2)
Từ (1) và (2) ==>\(\Delta ABD=\Delta EBD\) (CH+GN)
b)..............hình như tôi ko bt nx ^^
Hình bn Hoa vẽ rồi !! mk k vẽ lại nữa
a ) Phương Hoa lm rồi
b) Vì tam giác ABD = tam giác EBD ( câu a )
=> AB = EB ( cặp cạnh tượng ứng )
=> tam giác ABE cân (1)
Mà góc ABE = 60 độ (2)
Từ (1) và (2) => tam giác ABE đều ( điều phải chứng minh )
c) Xét tam giác ABK và tam giác EBK có :
BD : cạnh chung
AB = BE ( vì tam giác ABE đều )
góc ABK = góc EBK = 30 độ ( vì BK là phân giác )
=> tam giác ABK = tam giác EBK ( c-g-c )
=> AK = EK ( cặp cạnh tương ứng )
Mà tam giác ABE đều => AB = EB = AE
=> AB = EB = AE = 5cm
mà AK + EK = AE
=> AK = AE = 2,5 cm
Mà AK = EC
=> AK = EC = 2,5cm
Vì BE + CE = BC
=> 5 + 2,5 = BC
=> BC = 7,5 cm
Chúc bn học tốt !!!
a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD
Suy ra góc ABD = góc EBD
Vậy tam giác ABD = tam giác EBD
b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )
Suy ra tam giác ABE cân tại B
Tam giác ABE cân tại B có góc EBA =60 độ
Suy ra tam giác ABE là tam giác đều
c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ
Suy ra ACB = 30 độ
Suy ra tam giác ABC là nửa tam giác đều
Suy ra AB = 1/2 BC
Suy ra BC = 2AB = 2 . 5 = 10 cm
-Tham khảo-
a, Xét tam giác ABD và tam giác EBD có :
BD chung
góc ABD = góc EBD ( vì BD là phân giác của ABC)
=> tam giác ABD=tam giác EBD ( cạnh huyền-góc nhọn)
b, Vì tam giác ABD= tam giác EBD ( câu a)
=> AB=EB
Xét tam giác ABE có :
AB=EB
=> Tam giác ABE cân tại B
Xét tam giác ABE cân tại B có :
ABE =60 độ( vì góc ABC=60 độ)
=> Tan giác ABE đều
c, Xét tam giác ABC vuông tai jS có :
góc ABC =60 độ ( giả thiết), góc BAC= 90 độ( Vì tam giác ABC vuông tại A)
=> góc C = 30 độ
Mà trong tam giác vuông , cạnh đối diện với góc 30 độ bằng nửa cạnh huền
=> 2AB = BC . Mà AB = 5 ( giả thiết)
=> BC =10
Áp dụng định lý PYTAGO vào tam giác ABC vuông tại A có :
BC^2 = AB^2 + AC^2 . Mà AB = 5 , BC =10
=> 10^2 = 5^2 + AC^2
=> 100=25 + AC^2
=> AC^2 = 75
=> AC = căn bậc 2 của 75 ( Vì mình ko đánh dấu căn bậc 2 được nên đành phải viết)
a: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
c: Xét ΔABE có BA=BE
nên ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔBAE đều