K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=căn 6^2+8^2=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

c: HB=AB^2/BC=6^2/10=3,6cm

HC=10-3,6=6,4cm

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔBCA vuông tại A có AH vuông góc BC

nên AH^2=HB*CH

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔABC vuông tại A có AH vuông góc BC

nên AH^2=HB*HC

c: \(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)

AH=12*16/20=192/20=9,6cm

17 tháng 5 2018

Hình dễ vẽ; bạn tự vẽ nhé!

a) Xét tam giác HBA và tam giác ABC; ta có:

\(\widehat{AHB}=\widehat{BAC}=90^0\)

\(\widehat{B}\)- chung

\(\Rightarrow\)tam giác HBA đồng dạng tam giác ABC (g-g)

b) Xét tam giác ABH và tam giác ADH có:

\(\widehat{AHB}=\widehat{AHD}=90^0\)

\(AH\)- cạnh chung

\(BH=HD\)(GT)

\(\Rightarrow\)Tan giác ABD = tam giác ADH (c-g-c)

\(\Rightarrow\)AB = AD (2 cạnh tương ứng)

Vì tam giác HBA đồng dạng với tam giác ABC

\(\Rightarrow\frac{HB}{AB}=\frac{AB}{BC}\Rightarrow HB.BC=AB.AB=AB.AD\)(Vì AB = AD theo chứng minh trên)

Vậy AB.AD=BH.BC (ĐPCM)