Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại A và ΔEBD vuông tại A có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên DA=DE
mà DE<DC
nên DA<DC
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
tự kẻ hình nha
a)xét tam giác ADB và tam giác ADC có
A1=A2(gt)
AD chung
AB=AC(gt)
=> tam giác ADB= tam giác ADC(cgc)
b) vì tam giác BCE vuông tại C=> BEC+EBC=90 độ=> BEC=90 độ-EBC
ta có ACB+ACE=BCE=90 độ=> ACE=90 độ-BCE
vì tam giác ABC cân A=> ABC=ACB
=> BEC=ACE=90 độ-ABC=> tam giác ACE cân A
c) xét tam giác AME và tam giác AMC có
AE=AC( tam giác ACE cân A)
AME=AMC(=90 độ)
AM chung
=> tam giác AME=tam giác AMC(ch-cgv)
=> EM=CM( hai cạnh tương ứng)
=> M là trung điểm => BM là trung tuyến
vì AB=AC mà AC=AE=> AB=AE=> A là trung điểm BE=> CA là trung tuyến
từ tam giác ABD= tam giác ACD=> BD=CD (hai cạnh tương ứng)=> D là trung điểm BC=> ED là trung tuyến
Vì ED giao AC tại N mà ED,AC, BM là trung tuyến=> BM, AC,ED giao nhau tại N=> N thuộc BM=> B,N,M thẳng hàng
1. Xét tam giác vuông ABD và EBD có:
góc ABD = góc EBD ( BD là tia phân giác của góc ABC)
BD là cạnh chung
=> tam giác ABD = tam giác EBD ( cạnh huyền - góc nhọn)
2. Ta có AD=DE ( vì tam giác ABD = EBD) ( 1 )
Trong tam giác vuông DEC có DC là cạnh huyền
=> DE < DC ( 2 )
Từ (1) và (2)
=> AD<DC
3. xét hai tam giác vuông ADN và EDC có:
AD=DE (cmt)
góc ADN= EDC ( đối đỉnh)
=> tam giác ADN=EDC (cạnh góc vuông - góc nhọn kề)
=> AN=EC ( 2 cạnh tương ứng)
Ta có BA=BE ; AN=EC
=> BA+AN=BE+EC
<=> BN=BC
=> Tam giác BCN cân
Mà BD là tia phân giác
=> BD là đường trung trực ( ứng với cạnh NC)
Ta có: MN=MC
=> M thuộc đường trung trực ứng với NC
<=> M thuộc BD
=> B, D, M thẳng hàng