Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
tính cạnh BC
Xét tam giác ABC vuông tại A ta có
BC^2 = AB^2 + AC^2
hay BC^2 = 6^2 + 8^2
=> BC = 10 (cm)
còn những câu còn lại mình ko bt T_T
mình chỉ tóm tắt thôi nha
a) ta có <Cchung; <H=<A=90
b) ap 1 dung dinh ly Py ta go voi ▲ABC vuong tai A thì BC=10 cm
ta có ▲ABC dồng dang ▲HAC ta có:
\(\frac{HC}{AC}=\frac{AC}{BC}\)
\(\Rightarrow AC^2=HC.BC\)
\(\Rightarrow HC=8^2:10=6,4cm\)
c)xl nha câu c thì mình cm sắp ra rùi bạn suy nghi tiếp nha
cm ▲ABD dong dang ▲HBI (<A=<H=90; B1=<B2)
\(\Rightarrow\frac{AB}{HB}=\frac{BD}{BI}\)
\(\Rightarrow AB.BI=BD=HB\)
bây giờ thì bạn cm HB=HC(mình chỉ biết tới đây)
thì suy ra dược điều đó
1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600
=> tg AMI đều => AM = AI = 1/2AN
Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)
Từ (1) và (2) bn suy ra nhé
1b) Tam giác AMN vuông tại M có góc A = 60o
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2 /MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o
=> tg AMI đều => AM = AI = 1/2AN
Từ (1) và (2) bn suy ra nhé
A B C H D I K
a) Trong \(\Delta\)ABC vuông tại A có:
BC2 = AB2 + AC2
= 62 + 82
= 100
\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 (cm)
Trong \(\Delta\)ABC có BD là sđường phân giác của góc B
\(\Rightarrow\) \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
Aps dụng t/chất dãy tỉ số bằng nhau ta có:
\(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)\(=\dfrac{AD+CD}{AB+BC}=\dfrac{AC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
\(\Rightarrow\)\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\Rightarrow AD=3\left(cm\right)\\\dfrac{CD}{10}=\dfrac{1}{2}\Rightarrow CD=5\left(cm\right)\end{matrix}\right.\)
b) Xét \(\Delta\)HBI và \(\Delta\)ABD có:
\(\widehat{BHI}=\widehat{BAD}\left(=90^o\right)\)
\(\widehat{IBH}=\widehat{DBA}\)(BD là phân giác)
\(\Rightarrow\) \(\Delta\)HBI đồng dạng vs \(\Delta\)ABD (g - g)
\(\Rightarrow\) \(\dfrac{BH}{AB}=\dfrac{BI}{BD}\)
\(\Rightarrow\) AB.BI = AB.BD