K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔABC vuông tại A

=>BC^2=AB^2+AC^2

=>BC^2=6^2+8^2=100

=>BC=10(cm)

Xét ΔBAC có BD là phân giác

nên DA/AB=DC/BC

=>DA/3=DC/5

=>\(\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=1\)

=>DC=5(cm)

6 tháng 9 2023

\(\Delta ABC\) vuông tại A

\(\Rightarrow BC^2=AB^2+AC^2\) (Pytago)

\(=6^2+8^2\)

\(=100\)

\(\Rightarrow BC=10\left(cm\right)\)

Do BD là tia phân giác của \(\widehat{ABC}\)

\(\Rightarrow\dfrac{AB}{AD}=\dfrac{BC}{DC}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{AB}{AD}=\dfrac{BC}{DC}=\dfrac{AB+BC}{AD+DC}=\dfrac{6+10}{8}=2\)

\(\dfrac{BC}{DC}=2\Rightarrow DC=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC có AE là phân giác

nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)

=>\(\dfrac{BE}{6}=\dfrac{CE}{8}\)

=>\(\dfrac{BE}{3}=\dfrac{CE}{4}\)

mà BE+CE=BC=10cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{10}{7}\)

=>\(BE=\dfrac{10}{7}\cdot3=\dfrac{30}{7}\left(cm\right);CE=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\left(cm\right)\)

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=36+64=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{DA}{AB}=\dfrac{DC}{BC}\)

=>\(\dfrac{DA}{6}=\dfrac{DC}{10}\)

=>\(\dfrac{DA}{3}=\dfrac{DC}{5}\)

mà DA+DC=AC=8cm(D nằm giữa A và C)

nên \(\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{8}{8}=1\)

=>\(DA=3\cdot1=3cm;DC=5\cdot1=5cm\)

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(AM=MB=MC=\dfrac{BC}{2}=5\left(cm\right)\)

mà DC=5cm

nên CM=CD

Xét ΔCDI và ΔCMI có

CD=CM

\(\widehat{DCI}=\widehat{MCI}\)

CI chung

Do đó: ΔCDI=ΔCMI

=>\(\widehat{CID}=\widehat{CIM}\) và \(\widehat{IMC}=\widehat{IDC}\)(3)

Ta có: \(\widehat{IDC}=\widehat{BAD}+\widehat{ABD}\)(góc IDC là góc ngoài tại đỉnh D của ΔABD)

nên \(\widehat{IDC}=\widehat{BAD}+\widehat{ABD}=90^0+\widehat{ABD}\)(2)

Xét ΔBIM có \(\widehat{IMC}\) là góc ngoài tại đỉnh M

nên \(\widehat{IMC}=\widehat{MIB}+\widehat{MBI}\left(1\right)\)

Từ (1),(2),(3) suy ra \(\widehat{MIB}+\widehat{MBI}=90^0+\widehat{ABD}\)

mà \(\widehat{MBI}=\widehat{ABD}\)

nên \(\widehat{MIB}=90^0\)

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔBCA vuông tại A có AH vuông góc BC

nên AH^2=HB*CH

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

4 tháng 5 2015

1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng

=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600

=> tg AMI đều => AM = AI = 1/2AN

Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)

Từ (1) và (2) bn suy ra nhé

26 tháng 4 2019

1b) Tam giác AMN vuông tại M có góc A = 60o

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng

=> SAMD/SNMA  = (AM/MN)2 = AM2 /MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o

=> tg AMI đều => AM = AI = 1/2AN

Từ (1) và (2) bn suy ra nhé

9 tháng 2 2018