K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot5=3\cdot4=12\)

hay AH=2,4(cm)

Vậy: BC=5cm; AH=2,4cm

b) Xét (A) có 

AI là một phần đường kính

MH là dây

AI⊥MH tại I(gt)

Do đó: I là trung điểm của MH(Định lí đường kính vuông góc với dây)

Xét ΔCMI vuông tại I và ΔCHI vuông tại I có 

CI chung

IM=IH(I là trung điểm của MH)

Do đó: ΔCMI=ΔCHI(hai cạnh góc vuông)

Suy ra: CM=CH(hai cạnh tương ứng)

Xét ΔCMA và ΔCHA có 

CM=CH(cmt)

CA chung

AM=AH(=R)

Do đó: ΔCMA=ΔCHA(c-c-c)

Suy ra: \(\widehat{CMA}=\widehat{CHA}\)(Hai góc tương ứng)

mà \(\widehat{CHA}=90^0\)(gt)

nên \(\widehat{CMA}=90^0\)

hay CM là tiếp tuyến của (A)

9 tháng 7 2021

mik cần câu c thôi

 

30 tháng 11 2021

1: BC=5cm

AH=2,4cm

11 tháng 12 2021

1: AH=2,4cm

a: Xét (A;AH) có

AH là bán kính

BC\(\perp\)AH tại H

Do đó: BC là tiếp tuyến của (A;AH)

b: ΔAHI cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAI

Xét ΔAHB và ΔAIB có

AH=AI

\(\widehat{HAB}=\widehat{IAB}\)

AB chung

Do đó: ΔAHB=ΔAIB

=>\(\widehat{AHB}=\widehat{AIB}=90^0\)

=>BI là tiếp tuyến của (A;AH)

c: 

\(\widehat{HAB}+\widehat{HAC}=\widehat{BAC}=90^0\)

=>\(\widehat{HAC}=90^0-\widehat{HAB}\)

\(\widehat{KAH}+\widehat{HAI}=180^0\)(hai góc kề bù)

=>\(\widehat{KAH}+2\cdot\widehat{BAH}=180^0\)

=>\(\widehat{KAH}=180^0-2\cdot\widehat{BAH}=2\left(90^0-\widehat{BAH}\right)=2\cdot\widehat{CAH}\)

=>AC là phân giác của góc KAH

Xét ΔAHC và ΔAKC có

AH=AK

\(\widehat{HAC}=\widehat{KAC}\)

AC chung

Do đó: ΔAHC=ΔAKC

=>CH=CK

CH+HB=CB

mà CH=CK và BH=BI

nên CK+BI=BC

26 tháng 12 2017

mình hướng dẫn nhé

a) sử dụng hệ thức lượng trong \(\Delta\) vuông. Đây là tính cạnh

còn tính góc thì sử dụng hệ thức giữa cạnh và góc 

áp dụng công thức là làm đc đấy mà

b) sử dụng tính chất 2 tiếp tuyến cắt nhau rồi xét \(\Delta\)có tia phân giác đồng thời là đường cao, đường trung trực

c) chứng minh tiếp tuyến ta chứng minh \(\Delta\)vuông 

d) mình chưa nghĩ ra nhưng chắc là sử dụng hệ thức lượng quy về \(\Delta\)

vuông 

30 tháng 10 2021

a: \(R=\dfrac{BC}{2}=2.5\left(cm\right)\)

b: Xét tứ giác ABDC có 

O là trung điểm của AD

O là trung điểm của BC
Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

30 tháng 11 2021

1: BC=5cm

AH=2,4cm

29 tháng 12 2021

a: R=HC/2=6,4:2=3,2(cm)

NV
21 tháng 12 2020

\(\left\{{}\begin{matrix}\widehat{DCA}=\widehat{HCA}\\\widehat{DCA}+\widehat{DAC}=90^0\\\widehat{HCA}+\widehat{HBA}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{HBA}=\widehat{DAC}\)

\(\left\{{}\begin{matrix}\widehat{DAC}+\widehat{BAE}=90^0\\\widehat{HBA}+\widehat{HAB}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{BAE}=\widehat{HAB}\)

Có \(\left\{{}\begin{matrix}AH=AE=R\\\widehat{BAE}=\widehat{HAB}\\\text{AB chung}\end{matrix}\right.\)  \(\Rightarrow\Delta AHB=\Delta AEB\)

\(\Rightarrow\widehat{E}=\widehat{H}=90^0\Rightarrow BE\) là tiếp tuyến

21 tháng 12 2020

Cách chứng minh ^BAE=^HAB khó nghĩ thật ạ.