Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
BC=35cm
\(AH=\dfrac{AB\cdot AC}{BC}=16.8\left(cm\right)\)
b: \(AE=\dfrac{AH^2}{AC}=\dfrac{16.8^2}{28}=10.08\left(cm\right)\)
\(AD=\dfrac{AH^2}{AB}=\dfrac{16.8^2}{21}=13.44\left(cm\right)\)
Do đó: \(S_{AED}=\dfrac{AD\cdot AE}{2}=\dfrac{13.44\cdot10.08}{2}=67.7376\left(cm^2\right)\)
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACB}\) chung
Do đó: ΔABC đồng dạng với ΔHAC
b: Xét ΔKHB vuông tại K và ΔKAH vuông tại K có
\(\widehat{KHB}=\widehat{KAH}\left(=90^0-\widehat{B}\right)\)
Do đó: ΔKHB đồng dạng với ΔKAH
=>\(\dfrac{KH}{KA}=\dfrac{KB}{KH}\)
=>\(KH^2=KA\cdot KB\)
c: Ta có: ΔAHC vuông tại H
=>\(HC^2+HA^2=AC^2\)
=>\(HA^2=10^2-8^2=36\)
=>\(HA=\sqrt{36}=6\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(HB=\dfrac{6^2}{8}=4,5\left(cm\right)\)
BC=BH+CH
=4,5+8
=12,5(cm)
Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot12,5\cdot6=3\cdot12,5=37,5\left(cm^2\right)\)
a) Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{ABC}\) CHỤNG
suy ra: \(\Delta HBA~\Delta ABC\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=12^2+16^2=400\)
\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(AH=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6\)
\(BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2\)
Do tam gaics ABC vuông tại A nên:
\(S_{ABC}=\dfrac{1}{2}AB.AC=96\left(cm^2\right)\)
A B C 15 H K 12 20 16
Dễ có tam giác AHC ~ tam giác HKC ( g.g )
\(\Rightarrow\frac{S_{AHC}}{S_{HKC}}=\left(\frac{AC}{HC}\right)^2\)(*)
lại có tam giác AHC ~ tam giác BAC( g.g )
\(\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow HC=\frac{AC^2}{BC}=\frac{400}{25}=16\)cm
P/s : \(BC=25\)cm do Pytago
\(\Rightarrow S_{AHC}=\frac{1}{2}.AH.HC=\frac{1}{2}.12.16=96\)cm2
Từ (*) suy ra : \(\frac{96}{S_{HKC}}=\frac{400}{256}\Rightarrow S_{HKC}=\frac{256.96}{400}=\frac{1536}{25}\)cm2