K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 7 2021

Áp dụng đính lý Pitago:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow4^2=3^2+AC^2\)

\(\Leftrightarrow AC^2=7\)

\(\Rightarrow AC=\sqrt{7}\) (cm)

Áp dụng định lí Pytago vào ΔBCA vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=4^2-3^2=7\)

hay \(AC=\sqrt{7}\left(cm\right)\)

a: BC=căn 3^2+4^2=5cm

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEK=góc HEC

=>ΔEAK=ΔEHC

=>AK=HC

Xét ΔAKH và ΔHCA có

AK=HC

KH=CA

AH chung

=>ΔAKH=ΔHCA

=>góc AKH=góc HCA

mà góc HCA<góc ABC

nên góc AKH<góc ABH

24 tháng 5 2022

a.Áp dụng định lý pitago vào tam giác ABC vuông tại A, có:

\(BC^2=AB^2+AC^2\)

\(BC^2=4^2+3^2\)

\(BC^2=25\)

\(BC=\sqrt{25}=5\left(cm\right)\)

b.Ta có: \(BC>AB>AC\)

             \(\Rightarrow\widehat{A}>\widehat{C}>\widehat{B}\)

24 tháng 5 2022

a) ...pitago vào tam giác abc vuông tại a 

bc^2= ac^2+ab^2

bc^2= 25

bc=5cm

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=4^2+3^2=25\)

=>BC=5(cm)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

c: Sửa đề: ΔBHC đều

Ta có: ΔBAD=ΔBED

=>BA=BE

Xét ΔBEH vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBH}\) chung

Do đó: ΔBEH=ΔBAC

=>BH=BC

Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)

nên ΔBHC đều

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=4^2+3^2=25\)

=>BC=5(cm)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

c: Sửa đề: ΔBHC đều

Ta có: ΔBAD=ΔBED

=>BA=BE

Xét ΔBEH vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBH}\) chung

Do đó: ΔBEH=ΔBAC

=>BH=BC

Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)

nên ΔBHC đều

a: BC=căn 3^2+4^2=5cm

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔABD=ΔEBD

 

24 tháng 4 2018

vì tam giác abc vuông tại a, ta có

bc= ab2 + ac2

bc2 = 32 + 42

bc  = căn của 25

bc = 5

chu vi tam giác abc là:

3 + 4 + 5 = 12(cm)