Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tg ABD và tg HBD có:
\(\widehat{ABD}=\widehat{HBD}\)
\(\widehat{DAB}=\widehat{BHD}\left(=90\cdot\right)\)
chung BD
suy ra tg ABD = tg HBD ( ch-gn )
=) AB=BH
A B C D H 1 2 1 2 1
\(a,\widehat{ABC}=60^o\)( theo đề bài )
\(b,\)Xét \(\Delta ABD\)và \(\Delta HBD\)có :
\(BD\)là cạnh chung \(\left(1\right)\)
\(\widehat{B1}=\widehat{B2}=30^o\)( do \(BD\)là tia phân giác của \(\widehat{ABC}\)) \(\left(2\right)\)
Ta có : \(\widehat{D1}=180^o-\widehat{B1}-\widehat{A}\)
\(=180^o-30^o-90^o=60^o\)
\(\widehat{D2}=180^o-\widehat{B2}-\widehat{H1}\)
\(=180^o-30^o-90^o=60^o\)
\(\Rightarrow\widehat{D1}=\widehat{D2}\)\(\left(3\right)\)
Từ : \(\left(1\right);\left(2\right);\left(3\right)\)suy ra : \(\Delta ABD=\Delta HBD\left(g.c.g\right)\)
\(c,\)Không có điểm \(K\)
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>DA=DH
mà DH<DC
nên DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
=>ΔDAK=ΔDHC
=>góc ADK=góc HDC
=>góc HDC+góc KDC=180 độ
=>K,D,H thẳng hàng
A B C H I E D
ta có \(\widehat{ABH}+\widehat{HAB}=90^o\)( tam giác HAB vuông tại H )
và \(\widehat{HAB}+\widehat{HAC}=90^o\left(gt\right)\)
suy ra \(\widehat{ABH}=\widehat{HAC}\)( vì cùng phụ với HAB )
b) xét \(\Delta IAH \)và \(\Delta ICE\)có
IA = IC (gt)
IH =IE (gt)
góc HIA = góc EIC ( đối đỉnh )
do đó \(\Delta IAH=\Delta ICE\left(c.g.c\right)\)
suy ra AH = EC ( 2 cạnh tương ứng )
và \(\widehat{HAI}=\widehat{ECA}\)(2 góc tương ứng )
xét \(\Delta HAC\)và \(\Delta ECA\)có
AH = EC (cmt)
góc HAI = góc ECA (cmt)
AC là cạnh chung
do đó \(\Delta HAC=\Delta ECA\left(c.g.c\right)\)
suy ra \(\widehat{AHC}=\widehat{CEA}\)(2 góc tương ứng)
mà \(\widehat{AHC}=90^o\Rightarrow\widehat{CEA}=90^o\)
hay \(CE⊥AE\)
Hình tự vẽ nha
a) Vì tam giác ABC cân tại A
=> ABC = ACB (1)
Ta có ABC + ABD = ACB + ACE ( cùng = 1800 ) (2)
Từ (1) và (2) => ABD = ACE
Xét tam giác ABD và tam giác ACE có :
AB = AC ( gt )
ABD = ACE ( cmt )
BD = CE ( gt )
=> tam giác ABD = tam giác ACE ( c-g-c )
=> D = E
Xét tam giác BHD và tam giác CKE có :
DHB = EKC ( = 900 )
BD = CE ( gt )
D = E ( cmt )
=> tam giác BHD = tam giác CKE ( ch - gn )
=> đpcm
b) Vì tam giác ABD = tam giác ACE ( chứng minh câu a )
=> HAB = KAC ( 2 góc tương ứng )
Xét tam giác AHB và tam giác AKC có :
HAB = KAC ( cmt )
AHB = AKC ( = 900 )
AB = AC ( gt )
=> tam giác AHB = tam giác AKC ( ch - gn )
=> đpcm
c) Nối H với K
Xét tam giác ADE cân tại A ( vì AD = AE )
=> \(\widehat{D}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)
Xét tam giác AHK cân tại A ( vì AH = AK )
\(\Rightarrow\widehat{AHK}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)
Từ (1) và (2) => D = AHK
mà 1 góc này ở vị trí đồng vị
=> HK // DE hay HK // BC ( đpcm )
Có j lên đây hỏi nha : Group Toán Học
biết góc C = 30 nha bn