Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=10cm
AM=5cm
b: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ
nên AEMF là hình chữ nhật
c: Xét ΔCAB có
M là trung điểm của BC
MF//AB
Do đó F là trung điểm của AC
Xét tứ giác AMCD có
F là trung điểm chung của AC và MD
nên AMCD là hình bình hành
mà MA=MC
nên AMCD là hình thoi
a/ bn vẽ hình ra thì ta thấy tứ giác AMDE có 3góc vuông=>AMDE là hcn
b/xét tam giác ABC có AM là đường trung tuyến và góc A vuông =>AM=BM=CM(đườg trug tuuyến ứng với c.huyền bằng nửa c.huyền)
xét tgiác AMC có AM=CM (cmt) =>tam giác cân tại M
Mà có MElà đươờg cao=>cũng là đường trug tuyến
=> E là trug điểm của AC => AE=EC=AC/2=8/2=4cm
Tương tự tìm được :DA=DB=AB/2=6/2=3cm
=>Stứgiác AEDM= AE.DA=3.4=12
c/Ta có N đối xxứng với M qua E => ME=MN(1)
Mà AE=EC(2)
Từ(1)(2)=> AMCNlà hình bình hành(3)
Mà MN\(\perp\)AC(4)
Từ(3)(4)=> Hình thoi
bn tự̣ vẽ hình nha ,mk k vẽ đc̣ trên đây ,vẽ nó hơi khó,câu d mk chưa nghĩ rraa :)
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
b: Xét tứ giác PEDQ có
M là trung điểm chung của PD và EQ
PD vuông góc với EQ
Do đó: PEDQ là hình thoi
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
a: Xét tứ giác ADME có \(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
nên ADME là hình chữnhật
b: Xét ΔABC có MD//AC
nên MD/AC=BM/BC=1/2
=>MD=4cm
Xét ΔABC có ME//AB
nên ME/AB=CM/CB=1/2
=>ME=3cm
\(S_{ADME}=3\cdot4=12\left(cm^2\right)\)
c: Xét tứ giác AMCN có
E là trung điểm của AC
E là trung điểm của MN
Do đó: AMCN là hình bình hành
mà MA=MC
nên AMCN là hình thoi