Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC=8cm
b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
c: AH=4,8cm
bn ơi câu a bn giải thích ra luôn giùm mik ik
câu b,c nx
a) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\) \(AC^2=BC^2-AB^2\)
\(\Leftrightarrow\) \(AC^2=10^2-6^2=64\)
\(\Leftrightarrow\) \(AC=\sqrt{64}=8\)cm
b) Xét \(\Delta ABC\) và \(\Delta BDA\)có:
\(\widehat{BAC}=\widehat{DBA}=90^0\)
\(\widehat{ACB}=\widehat{BAD}\) (cùng phụ với góc DAC)
suy ra: \(\Delta ABC~\Delta BDA\)
c) \(\Delta ABC~\Delta BDA\)
\(\Rightarrow\)\(\frac{S_{ABC}}{S_{BDA}}=\left(\frac{AC}{AB}\right)^2=\left(\frac{8}{6}\right)^2=\left(\frac{4}{3}\right)^2=\frac{16}{9}\)
a,Tứ giác AEHG la hình chữ nhật.thật vậy:
xét tứ giác AEHG có goc a=90 độ ,góc E=90 độ(HE VUÔNG GÓC VỚI AB) , góc H=90 độ (AH vuông góc với BC)
suy ra tứ giác AEHG la hình chữ nhật
b,xét tam giac BHA có AH^2=AE*AB (1)
xét tam giác AHC có AH^2=AF*AC (2)
Từ (1) và (2) suy ra AE*AB=AF*AC
a. Xét tam giác ABC vuông tại A có:
AB2+AC2=BC2 (định lý Py-ta-go)
=>62+AC2=BC2
=>AC=8 cm.
=> SABC=AB.AC=6.8=48 (cm)
b. Ta có: SABC=AB.AC=BC.AH
=>6.8=10.AH
=>AH=4,8 cm.
a/
diện tích tam giác ABC là:
\(\dfrac{6.10}{2}\)=30 (cm2)
đường cao AH là
30:10=3 cm