K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

A B C N M a)#Xét △ABC vuông tại A, ta có :

AB2+AC2=BC2

Thay AB = 3 cm ; AC = 4cm,ta có:

32+42=BC2

⇒BC2=9+16=25=52

⇒BC = 5cm

b)#Xét △BAC vs △NAM, ta có:

BA=NA(gt)

∠BAC = ∠NAM (2 góc đối đỉnh)

AC=AM(gt)

⇒△BAC=△NAM(c.g.c)

⇒BC=NM

Vậy đpcm

21 tháng 2 2020

Thanks you 😊😊😊

4 tháng 2 2018

Ap dụng định lý  Pytago  vào tam giác vuông  \(ABC\)ta có:

             \(AB^2+AC^2=BC^2\)

     \(\Leftrightarrow\)\(BC^2=3^2+4^2=25\)

     \(\Leftrightarrow\)\(BC=\sqrt{25}=5\)

19 tháng 2 2020

bài 2

Chương II : Tam giác

a,

ta có AH vuông góc với CB

=> góc AHC = góc AHB = 90 độ

tam giác ABC cân tại A

=> AB = AC và góc ABH = góc ACH

xét 2 tam giác AHB và AHC

có góc AHC = góc AHB = 90 độ (cmt)

AB = AC (cmt)

góc ABH = góc ACH (cmt )

=> tam giác AHB = tam giác AHC ( cạnh huyền góc nhọn )(đpcm)

b,

từ a có tam giác AHB = tam giác AHC (canh huyền góc nhọn )

=> BH = CH ( 2 cạnh tương ứng )

và góc HAB = góc HAC ( 2 góc tương ứng ) (1)

xét hai tam giác BHM và CHN

có BMH = 90độ ( HM vuông góc với AB )

BH = CH ( cmt)

góc ABH = góc ACH (hai góc cạnh đáy của tam giác ABC cân tại A )

=> tam giác BHM = tam giác CHN ( cạnh huyền góc nhọn )

=> CN = BM ( 2 cạnh tương ứng )

mà AB = AC (hai cạnh khác đáy của tam giác cân ABC )

=> AB - BM = AC - CN

=> AM = AN

=> tam giác AMN cân

c, xét 2 tam giác AMO và ANO

có góc HAC = góc HAB (từ 1)

AM = AN (cmt)

AO là cạnh chung

=> tam giác AMO = tam giác ANO (c.g.c)

=> góc AON = góc AOM (2 góc tương ứng )

mà góc AON + góc AOM = 180 độ (2 góc kề bù )

=> góc AON = góc AOM = 90 độ

=> MN vuông góc với AO ( hay AH )

mà BC cũng vuông góc với AH ( gt)

=> MN // BC ( đpcm )

19 tháng 2 2020

bài 1 undefined

a, xét 2 tam giác ABM và ECM

có AM = EM (gt)

góc AMB = góc EMC ( 2 góc đối đỉnh )

BM = CM ( M là trung điểm của BC )

=> tam giác ABM = tam giác ECM ( c.g.c ) (đpcm)

b, từ a có tam giác ABM = tam giác ECM ( c.g.c )

=> góc ABM = góc ECM ( 2 góc tương ứng )

mà hai góc đó nằm ở vị trí so le trong nên AB // CE (đpcm )

a: BC=căn 4^2+3^2=5cm

b: Xét ΔABC vuông tại A và ΔANM vuông tại A có

AB=AN

AC=AM

=>ΔABC=ΔANM

=>BC=NM

c: ΔANB vuông tại A có BA=AN

nên ΔANB vuông cân tại A

=>góc ANB=45 độ

ΔACM vuông tại A có AC=AM

nên ΔACM vuông cân tại A

=>góc ACM=45 độ=góc ANB

=>CM//NB

5 tháng 3 2020

Các câu a,b,c,d mk làm đc r mn giúp mk câu e thôi

12 tháng 1 2023

a)       Xét \(\Delta BACvà\Delta NAMcó\)

                 \(\widehat{BAC}=\widehat{NAM}\) ( đối đỉnh )

                 \(BA=NA\) ( gt )

                  \(CA=MA\) ( gt )

\(\Rightarrow\Delta BAC=\Delta NAM\) ( c.g.c )

\(\Rightarrow BC=MN\) ( 2 cạnh tương ứng )

mik chỉ lm đc v hoi xin lũi bn do chx hiểu cái ý 2 câu a

12 tháng 1 2023

bn chép bài mik ucche

Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12cm và HC=16 cm. Tính chu vi tam giác ABC.Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NAvuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)a) Chứng minh: NA = NB.b) Tam giác OAB là tam giác gì? Vì sao?c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.Chứng minh: ND = NE.d) Chứng minh ON ⊥ DEBài 4:...
Đọc tiếp

Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12
cm và HC=16 cm. Tính chu vi tam giác ABC.
Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NA
vuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)
a) Chứng minh: NA = NB.
b) Tam giác OAB là tam giác gì? Vì sao?
c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.
Chứng minh: ND = NE.
d) Chứng minh ON ⊥ DE
Bài 4: Cho tam giác ABC cân tại A, Kẻ AH⊥BC (H ∈ BC)
a) Chứng minh góc ∠BAH = ∠CAH
b) Cho AH = 3 cm, BC = 8 cm. Tính độ dài AC.
c) Kẻ HE ⊥ AB, HD ⊥ AC . Chứng minh AE = AD.
d) Chứng minh ED // BC.
Bài 5: (3,5 điểm)
Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.
a) Chứng minh ∆DBA = ∆DBN.
b) Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh ∆BMC cân.
c) Chứng minh AB + NC > 2.DA.
Bài 6: (3,5 điểm)
Cho ∆ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D,
DN⊥BC tại N.
a) Chứng minh ∆ABD = ∆NBD.

3

b) Gọi K là giao điểm của hai đường thẳng BA và ND. Chứng minh ∆BKC cân.
Vẽ EH ⊥BC tại H. Chứng minh BC + AH > EK + AB.
Bài 7: (3,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.
a) Tính độ dài đoạn BC.
b) Vẽ BCAH tại H. Trên HC lấy D sao cho HD = HB.
Chứng minh: AB = AD.
c) Trên tia đối của tia HA lấy điểm E sao cho EH = AH. Chứng minh: ACED .
d) Chứng minh BD < AE.
Bài 5: (3 điểm) Cho ΔABC vuông tại A, kẻ phân giác BD của Bˆ (D thuộc AC), kẻ
BDAH (H thuộc BD), AH cắt BC tại E.
a) Chứng minh: ΔBHA = ΔBHE.
b) Chứng minh: BCED .
c) Chứng minh: AD < DC.
d) Kẻ BCAK (K thuộc BC). Chứng minh: AE là phân giác của KAˆC .
Bài 4: (3,5 điểm) Cho ΔABC vuông tại A, đường trung tuyến CM.
a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM.
b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC.
Chứng minh rằng ΔMAC = ΔMBD và AC = BD.
c) Chứng minh rằng AC + BC > 2CM.
d) Gọi K là điểm trên đoạn thẳng AM sao cho AM
3
2
AK

. Gọi N là giao điểm của

CK và AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID.

giúp mk với

1
10 tháng 3 2022

tú wibu:)

14 tháng 1 2021

AB2+AC2=BC2=32+42=25   suy ra BC2=5

19 tháng 2 2022

ĐỊT MẸ MÀY LÀM ĐÉO HẾT ĐI