Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét ΔABE và ΔDBE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔABE=ΔDBE
a) Xét t/giác ABE và t/giác DBE
có AB = BD (gt)
góc BAE = góc BDE = 900 (gt)
BE : chung
=> t/giác ABE = t/giác DBE (ch - cgv)
b) Ta có: t/giác ABE = t/giác DBE (cmt)
=> góc ABE = góc DBE (hai góc tương ứng)
=> BE là tia p/giác của góc ABD
hay BE là tia p/giác của góc ABC
c) Xét t/giác AEF và t/giác DEC
có góc FAE = góc CDE = 900 (gt)
AE = ED (Vì t/giác ABE = t/giác DBE)
góc AEF = góc DEC (đối đỉnh)
=> t/giác AEF = t/giác DEC (g.c.g)
=> EF = CF (hai cạnh tương ứng)
=> t/giác CEF là t/giác cân
d) Ta có: t/giác AEF = t/giác DEC (cmt)
=> AF = DC (hai cạnh tương ứng)
Mà AB + AF= BF
BD + DC = BC
Và AB = BD (gt)
=> BF = BC
=> t/giác BFC cân tại B
=> góc F = góc C = (1800 - góc B)/2 (1)
Ta lại có AB = BD (gt)
=> t/giác ABD cân tại B
=> góc BAD = góc BDA = (1800 - góc B)/2 (2)
Từ (1) và (2) suy ra góc BAD = góc F
mà góc BAD và góc F ở vị trí đồng vị
=> AD // CF (Đpcm)
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
=>ΔBAE=ΔBDE
b; BA=BD
EA=ED
=>BE là trung trực của AD
Sửa đề: Lấy E thuộc BC sao cho BE=BA
a: Chứng minh ΔBAD=ΔBED
Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
=>ΔDEC vuông tại E
c: Sửa đề: Tia BA cắt ED tại F
Ta có: ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=EC
hình tự vẽ:
xét hai tam giác vuông ABE và DBE:
ab=ad(gt); be là cạnh huyền chung
=>\(\Delta\) ABE = \(\Delta\)DBE
mình sẽ giải tiếp
a) theo đinh j lý pitago : tam giác abc vuông tại A
=> \(AB^2+AC^2=BC^2\)THAY SỐ TA ĐƯỢC \(5^2+7^2=BC^2\) TA ĐƯỢC \(74=BC^2\) =>BC =
8.6023
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: ΔABD=ΔEBD
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
Xét ΔDAF và ΔDEC có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DF=DC
Do đó: ΔDAF=ΔDEC
=>AF=CE
c: Ta có: ΔDAF=ΔDEC
=>\(\widehat{DAF}=\widehat{DEC}\)
mà \(\widehat{DEC}=90^0\)
nên \(\widehat{DAF}=90^0\)
Ta có: \(\widehat{BAD}+\widehat{DAF}=\widehat{BAF}\)
=>\(\widehat{BAF}=90^0+90^0=180^0\)
=>B,A,F thẳng hàng
Xét ΔBFC có BA/AF=BE/EC
nên AE//FC
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: DE=DA
DA<DF
=>DE<DF
c: Xét ΔBFC có
FE,CA là đường cao
FE cắt CA tại D
=>Dlà trực tâm
=>BD vuông góc FC
a: Xét ΔDAB và ΔDEB có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔDAB=ΔDEB
=>góc DEB=90 độ
=>DE vuông góc BC
b: AD=DE
mà DE<DC
nên AD<DC
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
=>\(\widehat{BAE}=\widehat{BDE}=90^0\)
=>DE\(\perp\)DB tại D
=>DE\(\perp\)BC tại D
b:
ΔBAE=ΔBDE
=>EA=ED
Xét ΔEAF vuông tại A và ΔEDC vuông tại E có
EA=ED
\(\widehat{AEF}=\widehat{DEC}\)
Do đó: ΔEAF=ΔEDC
=>AF=DC
Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BD}{DC}\)
nên AD//CF