Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H
Áp dụng hệ thức lượng ta có:
\(AH^2=BH.CH\)
\(\Rightarrow\)\(BH.CH=144\)
\(BH+CH=BC\)
\(\Rightarrow\)\(BH+CH=25\)
Theo hệ thức Vi-ét thì BH và CH là 2 nghiệm của phương trình:
\(x^2-25x+144=0\)
\(\Leftrightarrow\)\(\left(x-16\right)\left(x-9\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-16=0\\x-9=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=16\\x=9\end{cases}}\)
Vậy \(HC=16\)hoặc \(HC=9\)
p/s: mk k chắc cho lắm, bn tham khảo nhé
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)
Lời giải:
$BC=BH+CH=25+64=89$ (cm)
Áp dụng công thức hệ thức lượng trong tam giác vuông:
$AH^2=BH.CH=25.64\Rightarrow AH=40$ (cm)
Diện tích tam giác $ABC$ là: $AH.BC:2=40.89:2=1780$ (cm2)
Áp dụng hệ thức lượng trong tam giác :
AB.AC = BC.AH
<=> AB.AC = 25.12
<=> AB.AC = 300
Áp dụng công thức Pytago :
AB² + AC² = BC²
<=> AB² + AC² = 25² = 625
Ta có hệ pt :
{ AB.AC = 300
{ AB² + AC² = 625
{ AB = 300/AC
{ (300/AC)² + AC² = 625
{ AB = 300/AC
{ 90000/AC² + AC² = 625
{ AB = 300/AC
{ 90000 + AC^4 - 625AC² = 0
Đặt t = AC² ( t ≥ 0 )
<=> t² - 625t + 90000 = 0
<=> t = 400 ( chọn )
<=> t = 225 ( chọn )
<=> AC = 20 => AB = 300/AC = 300/20 = 15
<=> AC = 15 => AB = 300/AC = 300/15 = 20
Nếu AC = 20 ; AB = 15
Ta có BH = AB² / BC = 15² / 25 = 9
Nếu AC = 15 ; AB = 20
Ta có BH = AB² / BC = 20² /25 = 16
Ta có : \(\frac{HB}{HC}=4\Rightarrow HB=4HC\)
lại có : \(BC=HB+CH\Rightarrow25=4HC+CH\Leftrightarrow5HC=25\Leftrightarrow HC=5\)cm
=> \(HB=4.5=20\)cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AB^2=BH.BC=20.25\Rightarrow AB=10\sqrt{5}\)cm
* Áp dụng hệ thức : \(AH^2=HC.HB=100\Rightarrow AH=10\)cm
* Áp dụng hệ thức : \(AC^2=CH.BC=5.25\Rightarrow AC=5\sqrt{5}\)cm
\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.10.25=\frac{250}{2}=145\)cm2