K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

A B C M E

Xét tam giác ABC cân tại A có AM là trung tuyến 

=> AM đồng thời là đường cao

=> AM ⊥ BC hay AMC = 900 (1)

Xét tứ giác AECM có AC giao ME tại D

mà D đồng thời là trung điểm của AC và ME

=> tứ giác AECM là hình bình hành (2)

Từ (1) và (2) => AECM là hình chữ nhật

b) Vì AECM là hình chữ nhật

=> AE // BC (3)

Xét tam giác ABC có D là trung điểm của AC; M là trung điểm của BC

=> DM là đường trung bình của tam giác ABC

=> DM // AB (4)

Từ (3) và (4) => AEMB là hình bình hành ( đpcm )

c) ko hiểu đề :))

8 tháng 11 2018

c,

Hình chữ nhật AECM là hình vuông khi \(AC\perp EM\Rightarrow AC\perp AB\) (vì EM // AB ) \(\Rightarrow\widehat{BAC}=90^0\)

Vậy tam giác ABC vuông cân tại A thì AECM là hình vuông

tích mình đi

ai tích mình

mình tích lại

thanks

29 tháng 7 2018

AD=BD

BM=MC

=> MD là đường trung bỉnh tam giác BAC

=>MD//AD

=>góc BDM= góc BAC=90^0

=> MD vuông góc với AB

Bài 2. Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và ACa) Tứ giác BMNC là hình gì? Tại sao ?b) Gọi E là điểm đối xứng của M qua N. CM tứ giác AECM là hình bình hành vàEC=BM.c) Tam giác ABC cần có thêm điều kiện gì để tứ giác AECM là :- Hình chữ nhật- Hình thoi- Hình vuôngBài 3. Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D quatrung điểm M của AC.a, Tứ giác ADCE là hình gì? Vì sao?b,...
Đọc tiếp

Bài 2. Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC
a) Tứ giác BMNC là hình gì? Tại sao ?
b) Gọi E là điểm đối xứng của M qua N. CM tứ giác AECM là hình bình hành và
EC=BM.
c) Tam giác ABC cần có thêm điều kiện gì để tứ giác AECM là :
- Hình chữ nhật
- Hình thoi
- Hình vuông
Bài 3. Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a, Tứ giác ADCE là hình gì? Vì sao?
b, Tứ giác ABDM là hình gì? Vì sao?
c, Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d, Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?
Bài 4. Cho hình bình hành ABCD có AB = 2AD. Gọi E, F lần lượt là trung điểm của
CD. Gọi I là giao điểm của AF và DE, K là giao điểm của BF và CE.
Chứng minh rằng:
a) Tứ giác AECF là hình bình hành.
b) Tứ giác AEFD là hình gì? Vì sao?
c) Chứng minh tứ giác EIFK là hình chữ nhật.
d) Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông

0

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

b: Xét ΔABC có 

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

=>AE=3cm

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

=>AF=4cm

\(S_{AEMF}=AE\cdot AF=3\cdot4=12\left(cm^2\right)\)

c: Xét tứ giác ABNC có

M là trung điểm của BC

M là trung điểm của AN

Do đó: ABNC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABNC là hình chữ nhật

7 tháng 1 2022

Cảm ơn bạn nha^^

10 tháng 11 2019

a) Ta có: MB = MC (giả thiết)

DA = DB (Giả thiết)

⇒ DM là đường trung bình của Δ ABC

⇒ DM//AC

Mặt khác ABC vuông tại A

⇒ AC ⊥ AB ⇒ DM ⊥ AB ⇒ DE ⊥ AB (*)

E là điểm đối xứng với M qua D ⇒ DM = DE (**)

Từ (*) và (**) ta suy ra: Điểm E đối xứng với M qua AB

b) Ta có AB ⊥ EM và DE = DM, DA = DB

⇒ Tứ giác AEBM là hình thoi

⇒ AE//BM mà BM = MC ⇒ AE//MC và AE = MC

⇒ tứ giác AEMC là hình bình hàng

c) Ta có BC = 4 (cm) ⇒ BM = BC/2 = 2(cm)

Chu vi hình thoi ABEM là P = 4BM = 8 (cm)

d) Hình thoi AEBM là hình vuông khi góc ∠AMB = 900

⇒ AM ⊥ BC

Mặt khác: AM là trung tuyến của tam giác vuông ABC

Suy ra: Δ ABC vuông cân tại A

Điều kiện: Δ ABC vuông cân tại A

2 tháng 12 2021

a) Xét tam giác ABC vuông tại A có: 

+ E là trung điểm của AB (gt).

+ F là trung điểm của AC (gt).

=> EF là đường trung bình (định nghĩa đường trung bình trong tam giác).

=> 2EF = BC (Tính chất đường trung bình trong tam giác).

=> 2.4 = 8 (cm).

b) Xét tứ giác AECM có:

+ F là trung điểm của EM (do M là điểm đối xứng của E qua F).

+ F là trung điểm của AC (gt).

=> Tứ giác AECM là hình bình (dhnb).