Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
Do đó:ΔAHB=ΔAHD
c: Xét ΔABD có AB=AD
nên ΔABD cân tại A
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Nhiều thế.
Bài 1:
B C A
Xét \(\Delta ABC\)có \(AB=AC\)
\(\Rightarrow\Delta ABC\)cân tại \(A\)
\(\Rightarrow\widehat{B}=\widehat{C}=70\)độ
\(\Rightarrow\widehat{A}=180-70-70\)
\(\Rightarrow\widehat{A}=40\)độ
(Mình làm hơi nhanh khúc tính nhé tại đang bận!)
Tiếp nè: Bài 2
A B C H
Bạn xét 2 lần pytago là ra nhé. Lần 1 với \(\Delta AHC\). Lần 2 với \(\Delta AHB\). Thế là xong 2 câu a,b
Bài 3:
B A C H
a) Ta có \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow AH\)vừa là đường cao vừa là trung tuyến
\(\Rightarrow HB=HC\)
b) Câu này không có yêu cầu.
c + d: Biết là \(\widehat{HDE}=90\)và \(\Delta HDE\)nhưng không nghĩ ra cách làm :(
tự vẽ hình:
a. xét tam giác vuông AHB và tam giác AHC,ta có:
AB = AC ( gt)
AH là cạnh chung
=> tam giác AHB = tam giác AHC ( cạnh huyền - cạnh góc vuông)
=> HB = HC ( 2 cạnh tương ứng)
=> \(\widehat{BAH}=\widehat{CAH}\) ( 2 góc tương ứng)
mà HB = HC => BC/2 = 8/2= 4 ( cm)
b. xét tam giác vuông BH,theo định lý Pi-ta-go:
AB2 = AH2 + BH2
=> 52 = x2 + 42
=> x2 = 52 - 42
=> x2 = 9
=> \(\sqrt{x}=9\)
=> x = 3
Vậy AH = 3 cm
câu c nghĩ đã :)