Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
c: \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
tam giác abc có bd alf đường phân giác=>da/dc=ab/ac=3/5
=>ab=3/5*bc
=>ac^2=bc^2-ab^2=bc^2-(3/5*bc)^2=6/15*bc^2
Hay 64=6/15*bc^2=>bc^2=64*15/6=160
=>bc=Căn 160
ab^2=160-64=96=>ab=căn 96
a, Có : góc BAH = góc BCA ( cùng phụ với góc ABC )
=> Tam giác BHA đồng dạng với tam giác BAC (g.g)
=> BH/BA = BA/BC
=> BH/BC = BA^2
Tk mk nha
a: Xét ΔCMI vuông tại M và ΔCAB vuông tại A có
góc C chung
=>ΔCMI đồng dạng với ΔCAB
b: BC=căn 5^2+12^2=13cm
CM=13/2=6,5cm
ΔCMI đồng dạng với ΔCAB
=>MI/AB=CM/CA
=>MI/5=6,5/12=13/24
=>MI=65/24(cm)
a, Theo định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=4cm\)
Vì BD là pg nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{4}{8}=\dfrac{1}{2}\Rightarrow DC=\dfrac{5}{2}cm;AD=\dfrac{3}{2}\)cm
b, Vì DE // AB Theo hệ quả Ta lét
\(\dfrac{DC}{AC}=\dfrac{DE}{AB}\Rightarrow DE=\dfrac{AB.DC}{AC}=\dfrac{15}{8}\)cm
a:
Sửa đề tam giác DEC
Xet ΔABC vuông tại A và ΔDEC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDEC
b: \(BC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)
\(AD=\dfrac{2\cdot3\cdot5}{3+5}\cdot cos45=\dfrac{15\sqrt{2}}{8}\left(cm\right)\)
AD là phân giác
=>BD/AB=CD/AC
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{\sqrt{34}}{8}\)
=>\(BD=\dfrac{3\sqrt{34}}{8}\left(cm\right)\)
Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}\)
=>\(\dfrac{5}{BC}=sin30=\dfrac{1}{2}\)
=>BC=10(cm)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)