Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét Δ ABC, có :
\(AB^2+AC^2=BC^2\) (định lí Py - ta - go)
=> \(3^2+4^2=BC^2\)
=> \(25=BC^2\)
=> BC = 5 (cm)
Xét Δ ABC vuông tại A, theo hệ thức lượng có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
=> \(\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}\)
=> AH = 2,4 cm
b, Xét Δ ABD, có :
HD = HB (gt)
AH là đường cao
=> Δ ABD cân
a) Xét tam giác AHB (H=90*) va tam giác AHD (H=90*) co:
HB=HD ( gt)
AH chung
=> tam giác AHB=tam giác AHD
hok ngu toan mấy câu còn lại không biết làm
a: Xét ΔAHD và ΔAED có
AH=AE
góc HAD=góc EAD
AD chung
=>ΔAHD=ΔAED
=>DH=DE và góc AED=góc AHD=90 độ
DH=DE
DE<DC
=>DH<DC
b: AH=AE
DH=DE
=>AD là trung trực của HE
c: góc BAD+góc CAD=90 độ
góc BDA+góc HAD=90 độ
mà góc CAD=góc HAD
nên góc BAD=góc BDA
=>ΔBAD cân tại B
a: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
b: Gọi K là giao của CM và AH
Xét ΔAKC có
AM,Ch là đường cao
AM cắt CH tại D
=>D là trực tâm
=>KD vuông góc AC
=>K,D,E thẳng hàng
=>AH,ED,CM đồng quy
a: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
b: Gọi K là giao của CM và AH
Xét ΔAKC có
AM,Ch là đường cao
AM cắt CH tại D
=>D là trực tâm
=>KD vuông góc AC
=>K,D,E thẳng hàng
=>AH,ED,CM đồng quy
a:
a: Xet ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
b: Xét ΔABD có
AB=AD
góc B=60 độ
=>ΔABD đều
c: Xét ΔDAC có góc DAC=góc DCA
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc HDA=góc EDC
=>ΔDHA=ΔDEC
=>DH=DE
;
a) Sử dụng kết quả : CD là p/g của góc ECA đã chứng minh
Xét tam giác ACK có : CH là đường cao đông thời là đường p/g => tam giác ACK cân tại C
=> CH là đường trung trực của đoạn AK mà D thuộc CH
=> DA = DK (mọi điểm nằm trên đường trung trực của đoạn thẳng thì cách đều 2 đầu đoạn thẳng đó )
=> tam giác ADK cân tại D => góc ADH = HDK
mà góc ADH = ABH (do tam giác ADB cân tại A)
=> góc HDK = ABH mà 2 góc này ở vị trí SLT
=> KD //AB
b) Phải sửa lại đề là: AC > CD
Vì D thuộc đoạn HC nên CD < HC
mà tam giác AHC vuông tại H => HC < AC (cạnh góc vuông < cạnh huyền)
=> CD < HC < AC
vậy CD < AC
Trần Thị Loan cho mk hỏi chứng minh CD là tia phân giác góc ACE như thế nào ạ
a: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
b: ΔABD cân tại A
=>góc ADH=góc ABH
mà góc ABH=góc HAC
nên góc ADH=góc HAC
ΔABD cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAD
=>góc BAH=góc DAH
mà góc BAH=góc ACB
nên góc DAH=góc ACB
c: Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
góc HDA=góc EDC
=>ΔDHA đồng dạng với ΔDEC
=>góc ECD=góc HAD
=>góc ECB=góc ACB
=>CB là phân giác của góc ACE
e: ΔBAD cân tại A
=>góc ADB<90 độ
=>góc ADC>90 độ
Xét ΔADC có góc ADC>90 độ
nên AC là cạnh lớn nhất
=>AC>CD
a: Xét ΔHAB vuông tại H và ΔHAD vuông tại H có
HA chung
HB=HD
Do đó: ΔHAB=ΔHAD
b: Xét ΔCAD có \(\widehat{CDA}>90^0\)
nên CA>CD