Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDM có
H là trung điểm chung của AD và BM
nên ABDM là hình bình hành
Suy ra: AB=DM và AB//DM
b: Xét ΔADC có
CH là đường cao
DM là đường cao
CH cắt DM tại M
Do đó: M là trực tâm
=>AM vuông góc với CD
a) Xét ΔBHA vuông tại H và ΔBHD vuông tại H có
BH chung
AH=DH(gt)
Do đó: ΔBHA=ΔBHD(hai cạnh góc vuông)
b) Xét ΔHBA vuông tại H và ΔHKD vuông tại H có
HB=HK(gt)
HA=HD(gt)
Do đó: ΔHBA=ΔHKD(hai cạnh góc vuông)
⇒\(\widehat{HBA}=\widehat{HKD}\)(hai góc tương ứng)
mà \(\widehat{HBA}\) và \(\widehat{HKD}\) là hai góc ở vị trí so le trong
nên AB//DK(Dấu hiệu nhận biết hai đường thắng song song)
c) Ta có: AB//DK(cmt)
AB⊥AC(ΔABC vuông tại A)
Do đó: DK⊥AC
Xét ΔDAK có
KH là đường cao ứng với cạnh AD(KH⊥AD)
AC là đường cao ứng với cạnh DK(AC⊥DK)
KH\(\cap\)AC={C}
Do đó: C là trực tâm của ΔDAK(Tính chất ba đường cao của tam giác)
⇒DC⊥AK(đpcm)
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)
b.Xét tam giác vuông ABH và tam giác vuông ADH, có:
HD = HB ( gt )
AH: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )
=> AB = AD ( 2 cạnh tương ứng )
a) xét tam giac ABH và tam giac ADH ta có
AH=AH (canh chung)
BH=HD(gt)
goc AHB= góc AHD (=90)
-> tam giac ABH= tam giac ADH (c-g-c)
-> AB=AD (2 cạnh tương ứng)
-> tam giac ADB cân tại A
b)Xét tam giac ABH vuông tại H ta có
AB2= AH2+BH2 ( định lý pitago)
152=122+ BH2
BH2=152-122
BH2=81
BH=9
Xét tam giác AHC vuông tại H ta có
AC2=AH2+HC2 ( định lý pitago)
AC2=122+162
AC2=400
AC=20
c) ta có BC= BH+HC=9+16=25
Xét tam giác ABC ta có
BC2=252=625
AB2+AC2=152+202=625
-> BC2=AB2+AC2 (=625)
-> tam giac ABC vuông tại A (định lý pitago đảo)
d)xét tam giác ABH và tam giác EDH ta có
BH=HD (gt)
AH=HE(gt)
góc BHA= góc DHE (=90)
-> tam giác ABH= tam giac EDH (c-g-c)
-> góc BAH= góc DEH (2 góc tương ứng)
mà 2 góc nằm ở vị trí so le trong
nên AB// ED
lại có AB vuông góc AC ( tam giác ABC vuông tại A)
-> ED vuông góc AC
a) Vì ∆ABC cân tại A có AH là đường cao nên AH cũng là đường trung tuyến
Suy ra BH=CH
Xét ∆AHB và ∆AHC có
AH là cạnh chung
BH=CH (cmt)
AB=AC (∆ABC cân tại A)
Do đó ∆AHB=∆AHC
Xét ∆AMH ta có
AD vuông góc với MH (HD vuông góc AB)
Suy ra AD là đường cao của ∆AMH (1)
DH=DM (gt)
Nên AD là đường trung bình của ∆AMH (2)
Từ (1) và (2) suy ra ∆AMH cân tại A
Suy ra AM=AH