K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

a, xét tam giác ABE và tam giác MBE có : BE chung

AB = BM (gt)

AE = EM do E là trđ của AM (Gt)

=> tam giác ABE = tam giác MBE (c-c-c)

b, tam giác ABE = tam giác MBE (câu a)

=> góc ABK = góc MBK (đn)

xét tam giác ABK và tam giác MBK có : BK chung

AB =BM (gt)

=> tam giác ABK = tam giác MBK (c-g-c)

=> góc KAB = góc KMB (đn)

góc KAB = 90

=> góc KMB = 90

=> KM _|_ BC (đn)

26 tháng 2 2020

A B C M K Q F E

Xét tam giác ABE và tam giác MBE

có BA=BM(GT)

BE chung 

AE=EM (GT)

suy ra tam giác ABE = tam giác MBE (c.c.c)

suy ra góc BEA=góc BEM , góc BAE=góc BME  (1)

Mà góc BEA + góc BEM=180độ

suy ra góc BEA =góc BEM=90độ

Xét tam giác EAK và tam giác EMK

có AE=EM (GT)

góc KEA=góc KEM = 90 độ

cạnh EK chung

suy ra tam giác EAK = tam giác EMK (cg.c)

suy ra góc KME=góc KAE (2) 

Từ (1) và (2) suy ra góc KME +góc EMB=góc KAE+ góc EAB

suy ra góc KMB=góc KAB = 90 độ 

suy ra KM vuông góc với BC

c) sai đề nhé

26 tháng 2 2020

sao lại sai 

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

2 tháng 1 2020

có ai giúp tui hông

23 tháng 12 2018

giúp mk với mấy bạn ơi

11 tháng 12 2022

a: Xét ΔBAE và ΔBME có

BA=BM

BE chung

AE=ME

Do đo: ΔBAE=ΔBME

b: Xét ΔBAK và ΔBMK co

BA=BM

góc ABK=góc MBK

BK chung

Do đo: ΔBAK=ΔBMK

=>góc BMK=90 độ

=>MK vuông góc với BC

13 tháng 1 2019

a) vì AB=BM nên tam giác ABM cân tại B=> góc BAM= góc BMA
xét tam giác ABE và MBE có AM=BM,AE=MEvà góc BAE=góc BME
=>tam giác ABE=MBE

b,Xét tam giác ABM có BE là đường trung tuyến
=>BE là đường phân giác
=>góc ABK = góc KBM
Xét tam giác ABK và MBK có BK chung,AB=BM,góc ABK=KBM
=>tam giác ABK=MBK

c,Xét tứ giác KFMQ có KQ//FM,KQ=FM
=>tứ giác KFMQ là hình bình hành
=>HQ//KB
=>góc QHC=CBK
Mà góc KBC=ABK
=>Góc ABK=QHC
=>KAM=KMB=90 độ
=> KM vuông góc với BC

6 tháng 1 2020

Không có gì nhé.

6 tháng 1 2020

Chúc bạn học tốt!

19 tháng 11 2019
https://i.imgur.com/TjvJ7yO.jpg