K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

a)  Xét 2 tam giác vuông:   \(\Delta ABM\) và    \(\Delta EBM\) có:

   \(\widehat{ABM}=\widehat{EBM}\)(gt)

  \(BM:\) CHUNG

suy ra:    \(\Delta ABM=\Delta EBM\)  (CH_GN)

b)   \(\Delta ABM=\Delta EBM\)

\(\Rightarrow\)\(AB=EB\)  =>    B   thuộc trung trực AE

         \(MA=ME\) =>   M   thuộc trung tính   AE 

suy ra:   BM   là trung trực AE

c)    \(\Delta EMC\) vuông tại  E 

=>   \(EM< MC\)

mà   \(EM=AM\)

\(\Rightarrow\)\(AM< MC\)

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0
5 tháng 2 2021

a/  Xét tam giác ABM và tam giác EBM:

+    ^A = ^AEB ( = 90o)

+    BM chung

+    ^ABM = ^EBM ( do BM là phân giác ^B)

=>  Tam giác ABM = Tam giác EBM (ch - gn)

b/  Ta có: ^A = ^B + ^C = 90o (do tam giác ABC vuông tại A)

Mà ^C = 30o (gt)

=> ^B = 60o

Tam giác ABM = Tam giác EBM (cmt)

=> AB = EB (cặp cạnh tương ứng)

=> Tam giác ABE cân tại B 

Lại có: ^B = 60o (cmt)

=> Tam giác ABE đều 

16 tháng 3 2022

tham khảo

a: Xét ΔAMB và ΔAMC có

AB=AC

ˆBAM=ˆCAMBAM^=CAM^

AM chug

Do đó: ΔABM=ΔACM

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

ˆEAM=ˆFAMEAM^=FAM^

Do đó: ΔAEM=ΔAFM

Suy ra: AE=AF

hay ΔAEF cân tại A

c: Ta có: ΔAEM=ΔAFM

nên ME=MF

mà AE=AF

nên AM là đường trung trực của EF

hay AM⊥EF

16 tháng 3 2022

a: Xét ΔAMB và ΔAMC có

AB=AC

ˆBAM=ˆCAMBAM^=CAM^

AM chug

Do đó: ΔABM=ΔACM

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

ˆEAM=ˆFAMEAM^=FAM^

Do đó: ΔAEM=ΔAFM

Suy ra: AE=AF

hay ΔAEF cân tại A

c: Ta có: ΔAEM=ΔAFM

nên ME=MF

mà AE=AF

nên AM là đường trung trực của EF

hay AM⊥EF

20 tháng 2 2021

image

Chúc bạn học tốt

a) Xét ΔAMB vuông tại M và ΔAMC vuông tại M có 

AB=AC(ΔABC cân tại A)

AM chung

Do đó: ΔAMB=ΔAMC(cạnh huyền-cạnh góc vuông)

Suy ra: MB=MC(hai cạnh tương ứng)

b) Ta có: ΔAMB=ΔAMC(cmt)

nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

c) Xét ΔDMB vuông tại D và ΔEMC vuông tại E có 

MB=MC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDMB=ΔEMC(cạnh huyền-góc nhọn)

Suy ra: DM=EM(hai cạnh tương ứng)

Xét ΔMDE có MD=ME(cmt)

nên ΔMDE cân tại M(Định nghĩa tam giác cân)

a: Xét ΔBAM có BA=BM và góc ABM=60 độ

nên ΔBAM đều

b: Xét ΔBAD và ΔBMD có

BA=BM

góc ABD=góc MBD

BD chung

=>ΔBAD=ΔBMD

=>góc BMD=góc BAD=90 độ

=>DM vuông góc BC