K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)(Hai góc nhọn phụ nhau)

hay \(\widehat{C}=37^0\)

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)
mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{BD+CD}{9+12}=\dfrac{15}{21}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}BD=\dfrac{45}{7}\left(cm\right)\\CD=\dfrac{60}{7}\left(cm\right)\end{matrix}\right.\)

c) Xét tứ giác AFDE có 

\(\widehat{AFD}=90^0\)

\(\widehat{AED}=90^0\)

\(\widehat{FAE}=90^0\)

Do đó: AFDE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Hình chữ nhật AFDE có AD là tia phân giác của \(\widehat{FAE}\)(gt)

nên AFDE là hình vuông(Dấu hiệu nhận biết hình vuông)

25 tháng 9 2017

a, Aps dụng địnhlí Py-ta-go:
BC^2=AB^2+AC^2=6^2 + 8^2 =100
->BC=10(cm)
b, AD là phân giác góc A:=>BD/CD=AB/AC
=>BD/CD=6/8=3/4
=>BD/3=CD/4
mÀ bD+CD=10->BD/3=CD/4=(BD+CD)/7=10/7
=>bd=10/7*3=30/7(cm)
=>CD=10/7*4=40/7(cm)
c, Ta thấy: 
DE vuông góc với AB
DF vg góc với AC =>> Tứ giác AEDF là hình chữ nhật mà AD là p/giac góc A=>Tứ giác AEDF là hình vuông
Góc A: vuông
Ta có: S(ABC)=S(ADB)+S(ADC)
<=>1/2AB*AC=1/2ED*AB+1/2FD*AC
Vì:DE=DF(AEDF là hình vuông)=>DE=DF=(AB*AC)/(AB+AC)=49/14=24/7(cm)
=>S(AEDF)=DE^2=11,8(cm2)
=>C(AEDF)=4DE=4*24/7=13,71(CM

a) tam giác ABC vuông tại A => AB2 + AC2 = BC2 ( định lý py-ta-go)

                                  hay 92 + 122 = BC2

=> BC2 = 81 + 144 = 225 => BC = √225=15cm225=15cm

trong tam giác ABC có: AB < AC < BC

                          => góc C < góc B < góc A (định lý)

3 tháng 6 2022

cho tam giác ABC vuông tại A biết AB=3cm,BC=5cm.Tính độ dài đường cao AH

5 tháng 7 2017

Ôn tập Hệ thức lượng trong tam giác vuông

a/

Áp dụng định lí Pitago vào ∆ABC vuông tại A ta được

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\Rightarrow\)B^\(\approx53^0\)

C^\(=90^0-53^0\approx37^0\)

b/

Vì AD là tia phân giác A^ nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(DB=BC-DC=10-DC\)

Suy ra \(\dfrac{10-DC}{DC}=\dfrac{4}{6}\Rightarrow60-6.DC=4.DC\)

\(\Leftrightarrow10.DC=60\Leftrightarrow DC=6\left(cm\right)\)

Suy ra \(DB=10-6=4\left(cm\right)\)

6 tháng 10 2017

\(\dfrac{4}{6}\dfrac{ }{ }\) lấy ở đâu thế

30 tháng 10 2021

c: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

mà AD là tia phân giác

nên AEDF là hình vuông

17 tháng 9 2018

ABCDEF12   

a)Theo định lý Pi-ta-go , ta có :

BC2 = AB2 + AC2

BC2 = 62 + 82

BC2 = 100

=> BC = 10 

\(sinB=\frac{AC}{BC}=\frac{8}{10}=\frac{4}{5}\)

\(\Rightarrow\widehat{B}\approx53^08^'\)

\(\Rightarrow\widehat{C}\approx90^0-\widehat{B}\approx90^0-53^08^'\approx36^052^'\)

b) AD là phân giác của \(\widehat{A}\)

\(\Rightarrow\widehat{A_1}=\widehat{A_2}=\frac{\widehat{A}}{2}=\frac{90^0}{2}=45^0\)

\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\)

\(\Rightarrow\frac{BD}{3}=\frac{CD}{4}=\frac{CD+CD}{7}=\frac{10}{7}\)

\(\Rightarrow BD=\frac{3.10}{7}=\frac{30}{7}\)

\(\Rightarrow CD=\frac{4.10}{7}=\frac{40}{7}\)

c) Tứ giác AEDF có \(\widehat{A}=\widehat{F}=\widehat{E}=90^{^0}\)

=> AEDF là hình chữ nhật .

AD là phân giác của \(\widehat{A}\)

=> AEDF là hình vuông .

\(DE\perp AB\)  \(AC\perp AB\)  => DE // AC 

\(\frac{CD}{BC}=\frac{AE}{AB}\) ( đl Ta lét )

=> \(AE=\frac{CD.AB}{BC}=\frac{\frac{40}{7}.6}{10}=\frac{24}{7}\)

Chu vi tứ giác AEDF = \(\frac{24}{7}.4=\frac{96}{7}\)

\(S_{AEDF}=\left(\frac{24}{7}\right)^2=\frac{576}{49}\left(cm\right)\)

16 tháng 10 2020

XÉT tam giác ABC vuông tại A : BC2=AB2+AC2=36+64+100 

=>BC=10.

b) áp dụng tích chất đường pg trong tam giác vào tam giác abc ta có :

AB/AC=BD/DC <=> 6/8=BD/DC<=>BD/6=DC/8=K .

=> 6K=DC ; 8K=BD .

CÓ  BD+DC =BC=10

<=>6K+8K=10

<=>14K=10

<=>K=5/7 .

=>DB=5/7 . 8 = 40/7 ;DC=5/7 . 6 =30/7 .

C) TG AEDF LÀ HCN VÌ : GÓC DÈ = GÓC EAF = GÓC AFD=90'.

CHU VI VÀ DIỆN TÍCH THÌ TÍNH CẠNH EA VÀ ED THÌ RA.

c: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

mà AD là tia phân giác

nên AEDF là hình vuông

a: BC=căn 6^2+8^2=10cm

Xét ΔABC vuông tại A có sin C=AB/BC=3/5

nên góc C=37 độ

=>góc B=53 độ

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=10/7

=>DB=30/7cm; DC=40/7cm

c: Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

AD là phân giác của góc EAF

=>AEDF là hình vuông