Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABC vuông tại A có \(BC^2=AB^2+AC^2\left(pytagor\right)\)
\(\Rightarrow BC=10\left(cm\right)\)
xét tam giác ABC ta có AD là đường phân giác => \(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BC}{AB+AC}=\frac{5}{7}\)
=> BD= 30/7 (cm) ; DC= 40/7 (cm)
b/ có DH vuông góc AB ; AC vuông góc AB (tam giác vuông)
=> DH//AC => \(\frac{DH}{AC}=\frac{BD}{BC}=\frac{BH}{AB}\)(hệ quả Thales) => \(DH=\frac{AC.BD}{BC}=\frac{24}{7}\left(cm\right)\)
ta có HAD=CAD (p/giác) ; HDA=CAD( 2 góc slt; DH//AC) => HAD=HDA => tam giác AHD cân tại H
mà tam giác AHD vuông tại H => tam giác AHD vuông cân tại H
=> \(AD^2=2DH^2\)=> \(AD=\frac{24\sqrt{2}}{7}\left(cm\right)\)
mình ko tính ra số thập phân. Bạn tự tính nhé. Chúc bn học tốt
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=BC^2-AB^2=13^2-12^2=169-144=25\)
=>\(AC=\sqrt{25}=5\left(cm\right)\)
b: XétΔBAC có BD là phân giác
nên \(\dfrac{AD}{BA}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{12}=\dfrac{CD}{13}\)
D nằm giữa A và C
=>AD+DC=AC
=>AD+DC=5(cm)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{12}=\dfrac{CD}{13}=\dfrac{AD+CD}{12+13}=\dfrac{5}{25}=0,2\)
=>\(AD=2\cdot12=2,4\left(cm\right);CD=2\cdot13=2,6\left(cm\right)\)
c: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
=>DA=DH
mà DA=2,4(cm)
nên DH=2,4(cm)
a/ Tứ giác AKDH có:
^BAC = ^AKD = ^AHD = 90° (GT).
=>AKDH là hình chữ nhật
b/ Áp dụng định lí Pythagoras vào ∆ABC vuông tại A có:
BC^2=AB^2+AC^2.
=>BC^2=9+16=25
=> BC = 5 (cm)
Xét ∆ABC vuông tại A có AD là đường trung tuyến.
=>AD = 1/2BC=2,5 (cm)
b/ Có:
DK vuông góc vs AB.
AB vuông góc vs AC.
=> DK // AC.
Xét ∆ABC có:
DK // AC, K thuộc AB.
D là trung điểm BC.
=> K là trung điểm AB (đ/l)
=> KD là đường trung bình ∆ABC
=> KD = 1/2AC=1,5(cm)
Có
S_(∆ABC)=1/2.KD.AB
=1/2.4.1,5
=2.1,5=3 (cm²)
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: DA=DH
DH<DC
=>DA<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
Áp dụng Pitago ta có : BC = 10
Áp dụng tính chất của tia phân giác ta có : BD/DC = AB/AC = 3/4
=> BD/BC = 3/7 => BD = 30/7 cm, CD = 40/7 cm
HD // AC => HD / AC = BD / BC
=> HD = 30/70.8 = 24/7
Do góc HAD = 45 độ => T/g HAD vuông cân => AD^2 = 1152/49 => AD = \(\frac{24\sqrt{2}}{7}\)cm