K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

Áp dụng Pitago ta có : BC = 10

Áp dụng tính chất của tia phân giác ta có : BD/DC = AB/AC = 3/4

=> BD/BC = 3/7 => BD = 30/7 cm, CD = 40/7 cm

HD // AC => HD / AC = BD / BC

=> HD = 30/70.8 = 24/7 

Do góc HAD = 45 độ => T/g HAD vuông cân => AD^2 = 1152/49 => AD = \(\frac{24\sqrt{2}}{7}\)cm

5 tháng 3 2020

a, dùng pytago tính ra BC = 10 cm

tam giác ABC có AD là phân giác (gt)

=> CD/AC = BD/AB (tính chất)

=> CD + DB/AB+AC = CD/AC + BD/AB

AB = 6; AC = 8; BC = 10 và CD + DB = BC

=> 10/14 = CD/8 = BD/6

=> CD = 40/7 và BD = 30/7

10 tháng 7 2017

xét tam giác ABC vuông tại A có \(BC^2=AB^2+AC^2\left(pytagor\right)\)

\(\Rightarrow BC=10\left(cm\right)\)

xét tam giác ABC ta có AD  là đường phân giác => \(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BC}{AB+AC}=\frac{5}{7}\)

=> BD= 30/7 (cm) ; DC= 40/7 (cm)

b/ có DH  vuông góc AB ; AC vuông góc AB (tam giác vuông)

=> DH//AC => \(\frac{DH}{AC}=\frac{BD}{BC}=\frac{BH}{AB}\)(hệ quả Thales) => \(DH=\frac{AC.BD}{BC}=\frac{24}{7}\left(cm\right)\)

ta có HAD=CAD (p/giác) ; HDA=CAD( 2 góc slt; DH//AC) => HAD=HDA => tam giác AHD cân tại H

mà tam giác AHD vuông tại H => tam giác AHD vuông cân tại H

=> \(AD^2=2DH^2\)=> \(AD=\frac{24\sqrt{2}}{7}\left(cm\right)\)

mình ko tính ra số thập phân. Bạn tự tính nhé. Chúc bn học tốt

11 tháng 7 2017

Thanks bạn

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=BC^2-AB^2=13^2-12^2=169-144=25\)

=>\(AC=\sqrt{25}=5\left(cm\right)\)

b: XétΔBAC có BD là phân giác

nên \(\dfrac{AD}{BA}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{12}=\dfrac{CD}{13}\)

D nằm giữa A và C

=>AD+DC=AC

=>AD+DC=5(cm)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{12}=\dfrac{CD}{13}=\dfrac{AD+CD}{12+13}=\dfrac{5}{25}=0,2\)

=>\(AD=2\cdot12=2,4\left(cm\right);CD=2\cdot13=2,6\left(cm\right)\)

c: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

=>DA=DH

mà DA=2,4(cm)

nên DH=2,4(cm)

 

13 tháng 12 2020

a/ Tứ giác AKDH có:

^BAC = ^AKD = ^AHD = 90° (GT).

=>AKDH là hình chữ nhật

b/ Áp dụng định lí Pythagoras vào ∆ABC vuông tại A có:

BC^2=AB^2+AC^2.

=>BC^2=9+16=25

=> BC = 5 (cm)

Xét ∆ABC vuông tại A có AD là đường trung tuyến.

=>AD = 1/2BC=2,5 (cm)

b/ Có:

DK vuông góc vs AB.

AB vuông góc vs AC.

=> DK // AC.

Xét ∆ABC có:

DK // AC, K thuộc AB.

D là trung điểm BC.

=> K là trung điểm AB (đ/l)

=> KD là đường trung bình ∆ABC

=> KD = 1/2AC=1,5(cm)

S_(∆ABC)=1/2.KD.AB

=1/2.4.1,5

=2.1,5=3 (cm²)

21 tháng 12 2016

A B C H D K

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

b: DA=DH

DH<DC

=>DA<DC

c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC cân tại B