Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm. Đường phân giác của góc BAC cắt cạnh BC tạ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2021

a/

\(BC^2=AB^2+AC^2\) (Pitago)

\(\Rightarrow BC^2=6^2+8^2=100\Rightarrow BC=10cm\)

Theo định lý đường phân giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\)

Mà \(BD+CD=BC=10cm\)

\(\Rightarrow CD=4x\frac{10}{3+4}=\frac{40}{7}cm\)

b/ Xét tg vuông DEC và tg vuông ABC có

\(\widehat{ACB}\) chung

\(\widehat{DEC}=\widehat{ABC}\) (cùng phụ với \(\widehat{ACB}\) )

=> tg DEC đồng dạng với tg ABC (g.g.g)

c/ ta có

\(\widehat{BAE}=90^o;\widehat{BDE}=90^o\) => A và D cùng nhìn BE dưới cùng 1 góc bằng 90 độ nên ABDE là tứ giác nội tiếp đường tròn

Ta có sđ\(\widehat{BAD}=\frac{1}{2}\) sđ cung BD \(=45^o\)(Góc nội tiếp)

\(\widehat{BED}=\frac{1}{2}\) sđ cung BD (Góc nội tiếp)

\(\Rightarrow\widehat{BED}=\widehat{BAD}=45^o\)

Xét tg vuông BDE có

\(\widehat{EBD}=90^o-\widehat{BED}=90^o-45^o=45^o\)

\(\Rightarrow\widehat{EBD}=\widehat{BED}=45^o\) => tg BDE cân tại D

 

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: Sửa đề: vuônggóc BC, cắt AC tại H

Xet ΔCDH vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDH đồng dạng với ΔCAB

c: BD/DC=AB/AC=4/3

28 tháng 2 2017

tao là thằn lớp 5 .thế mà tao cũng giải đc đấy . bài này là tao sản xuất  có đáp án là .........

8 tháng 5 2016

a/ Xét tg HBA và tg ABC, có:

góc BHA = góc BAC = 90 độ

góc B chung

Suyra: tg HBA đồng dạng với tg ABC (g-g)

b/ Ta có tg ABC vuông tại A:

\(BC^2=AC^2+AB^2\)

\(BC^2=8^2+6^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\)(cm)

Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)

\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)

\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)

4 tháng 7 2018

b,

Theo định lý Py-ta-go ta có:

+) 

Trong Tam giác ABC vuông tại B

Ta có: 

AB^2+BC^2=AC^2

=> AC^2=100

=> AC = 10

4 tháng 7 2018

a,

Xét tam giác BAC và QEC có:

Góc ABC= Góc CQE

Góc C chung

Góc CQE= Góc CAB ( Vì Góc A + Góc B + Góc C = Góc CQE + Góc C + Góc QEC )

=> BAC đồng dạng với QEC

(đpcm)

14 tháng 4 2021

A B C 6 8 H E D

a, Xét tam giác ABC và tam giác HBA ta có : 

^BAC = ^AHB = 900

^B _ chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g ) 

c, tam giác ABC vuông tại A, có đường cao AH 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm 

Ta có : \(\dfrac{AC}{AH}=\dfrac{BC}{AB}\)( cặp tỉ số đồng dạng ý a )

\(\Rightarrow\dfrac{8}{AH}=\dfrac{10}{6}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}\)cm 

d, phải là cắt AC nhé, xem lại đề nhé bạn 

 

1 tháng 3 2020

A B C H E F I K 1 1 1

a) Áp dụng địnhh lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=4,8\left(cm\right)\)

b)  Xét tam giác AEH và tam giác AHB có:

\(\hept{\begin{cases}\widehat{A1}chung\\\widehat{AEH}=\widehat{AHB}=90^0\end{cases}\Rightarrow\Delta AEH~\Delta AHB\left(g.g\right)}\)

c) Xét tam giác AHC và tam giác AFH có:

\(\hept{\begin{cases}\widehat{HAC}chung\\\widehat{AHC}=\widehat{AFH}=90^0\end{cases}\Rightarrow\Delta AHC~\Delta AFH\left(g.g\right)}\)

\(\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\)( các đoạn t.ứng tỉ lệ ) 

\(\Rightarrow AH^2=AC.AF\)

d) Xét tứ giác AEHF có:

\(\hept{\begin{cases}\widehat{AEH}=90^0\\\widehat{EAF}=90^0\\\widehat{AFH}=90^0\end{cases}\Rightarrow AEHF}\)là hình chữ nhật ( dhnb)

\(\Rightarrow EF\)là đường phân giác của góc AEH và AH là đường phân giác của góc EHF (tc hcn )

\(\Rightarrow\widehat{E1}=\frac{1}{2}\widehat{AFH},\widehat{H1}=\frac{1}{2}\widehat{EHF}\)

Mà \(\widehat{AEH}=\widehat{EHF}\left(tc\right)\)

\(\Rightarrow\widehat{E1}=\widehat{H1}\) (3)

Vì tam giác AHC vuông tại H nên \(\widehat{HAC}+\widehat{C}=90^0\)( 2 góc phụ nhau ) (1)

Vì tam giác AFH vuông tại F nên \(\widehat{HAF}+\widehat{H1}=90^0\)( 2 góc phụ nhau ) (2)

Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{H1}\)(4)

Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{E1}\)

Xét tam giác ABC và tam giác AFE có:

\(\hept{\begin{cases}\widehat{A}chung\\\widehat{C}=\widehat{E1}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta AFE\left(g.g\right)}\)

e) vÌ \(\Delta ABC~\Delta AFE\left(cmt\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AF}{AE}\)( các đoạn t.ứng tỉ lệ ) (5)

Xét tam giác ABC có AK là đường phân giác trong của tam giác ABC

\(\Rightarrow\frac{BK}{KC}=\frac{AB}{AC}\)( tc)  (6)

Xét tam giác AEF có AI là đường phân giác trong của tam giác AEF

\(\Rightarrow\frac{IF}{IE}=\frac{AF}{AE}\)(tc)  (7)

Từ (5) ,(6) và (7) \(\Rightarrow\frac{BK}{KC}=\frac{IF}{IE}\)

\(\Rightarrow KB.IE=KC.IF\left(đpcm\right)\)