K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔABD vuông tại A và ΔHBI vuông tại H có

góc ABD=góc HBI

=>ΔABD đồng dạng với ΔHBI

b: góc AID=góc BIH=góc ADB=góc ADI

=>ΔADI can tại A

30 tháng 3 2022

a, Xét ΔABC và ΔHBA có :

\(\widehat{A}=\widehat{AHB}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right)\)

b, Xét ΔABC vuông tại A, theo định lý Pi-ta-go ta có :

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Ta có : \(\Delta ABC\sim\Delta HBA\left(cmt\right)\)

\(\Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}\)

hay \(\dfrac{8}{AH}=\dfrac{10}{6}\)

\(\Rightarrow AH=\dfrac{8.6}{10}=4,8\left(cm\right)\)

c, Xét ΔAHB và ΔCHA có :

\(\widehat{BHA}=\widehat{AHC}=90^0\)

\(\widehat{BAH}=\widehat{C}\left(phụ\cdot với\cdot\widehat{B}\right)\)

\(\Rightarrow\Delta AHB\sim\Delta CHA\left(g-g\right)\)

\(\Rightarrow\dfrac{AH}{HC}=\dfrac{BH}{AH}\)

\(\Rightarrow AH^2=HC.BH\)

d, Xét ΔABD và ΔHBI có :

\(\widehat{H}=\widehat{A}=90^0\)

\(\widehat{ABD}=\widehat{HBI}\left(phân\cdot giác\cdot BD\right)\)

\(\Rightarrow\Delta ABD\sim\Delta HBI\left(g-g\right)\)

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BD}{BI}\)

\(\Rightarrow AB.BI=BD.HB\left(đpcm\right)\)

1 tháng 4 2021

a) Xét tam giác AHD và tam giác CKD có:

AHD=CKD=90

\(D_1=D_2\) (2 góc đối đỉnh)

=> tam giác AHD đồng dạng tam giác CKD (g-g)

=> đpcm

1 tháng 4 2021

b) Xét tam giác AHB và tam giác CKB có

AHB=BKC=90

ABD=DBC ( BD là tia phân giác ABC)

=> Tam giác AHB đồng dạng CKB (g-g)

=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

b:

Sửa đề: AN=2cm

MN//BC

=>MN/BC=AN/AC

=>MN/10=2/8=1/4

=>MN=2,5cm

c AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=10/7

=>DB=30/7cm; DC=40/7cm

a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

b: BC=căn 6^2+8^2=10

AH=6*8/10=4,8

c: ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

d: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

=>ΔBAD đồng dạng với ΔBHI

=>BA/BH=BD/BI

=>BA*BI=BH*BD

góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

=>ΔADI cân tại A

6 tháng 2 2018

Bài 1:

Áp dụng tính chất đường phân giác của tam giác ta có:

\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{18}=\frac{2}{3}\)

\(\Rightarrow\frac{BD}{2}=\frac{DC}{3}=\frac{BD+DC}{2+3}=\frac{BC}{5}\Rightarrow\frac{BD}{BC}=\frac{2}{5}\)

Kẻ \(DK//BE\left(K\in AC\right)\text{ ta có:}\)

\(\frac{AE}{EK}=\frac{AI}{ID}=2;\frac{EK}{EC}=\frac{BD}{BC}=\frac{2}{5}\)

Do đó:\(\frac{AE}{EK}\cdot\frac{EK}{EC}=\frac{AE}{EC}=\frac{2}{5}.2=\frac{4}{5}\)

b)\(\text{Ta có:}\)

\(\frac{AE}{EC}=\frac{4}{5}\Rightarrow\frac{AE}{4}=\frac{EC}{5}=\frac{AE+EC}{4+5}=\frac{AC}{9}=\frac{18}{9}=2\)

\(\Rightarrow AE=8cm,EC=10cm\)

5 tháng 2 2018

bn ơi bài 1 ý a)  chỉ có thể tính tỉ lệ thôi ko tính đc ra số hẳn đâu