K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2021

pytago \(=>BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+32^2}=40cm\)

vì ED là trung trực của BC \(=>EB=EC=\dfrac{1}{2}BC=20cm\)

vì ED................................\(=>\angle\left(DEC\right)=90^o\)

mà tam giác ABC vuông tại A \(=>\angle\left(A\right)=90^o\)

\(=>\angle\left(DEC\right)=\angle\left(A\right)=90^o\)

có \(\angle\left(C\right)chung\)\(=>\Delta DEC\sim\Delta BAC\left(g.g\right)\)

\(=>\dfrac{EC}{AC}=\dfrac{ED}{AB}=>\dfrac{20}{32}=\dfrac{ED}{24}=>ED=15cm\)

 

 

 

11 tháng 7 2021

gửi bạn

9 tháng 7 2018

tyyvbthy

9 tháng 7 2018

A B C D E

Xét tam giác vuông ABC, ta có:

BC2 = AB2+ AC2 ( theo định lý py-ta-go)

BC2 = 242+ 322

BC2 = 1600

BC = 40(cm)

EC = BC : 2 = 40 : 2 = 20(cm)

Xét tam giác vuông ACB và tam giác vuông ECD có:

\(\widehat{A}\) = \(\widehat{E}\) = 90o

\(\widehat{C}\) chung

=> Tam giác ACB = tam giác ECD (g.g)

=> AC/EC = AB/DE

=> DE = AB.EC/AC = 15cm

Vậy DE = 15cm

loading...  loading...  

16 tháng 9 2023

bạn có thể tham khảo qua link này 
https://hoidap247.com/cau-hoi/102853

14 tháng 11 2023

Ta có \(\widehat{HAC}=\widehat{B}\) (cùng phụ với \(\widehat{C}\)

Mà \(\widehat{B}=\tan^{-1}\left(\dfrac{AC}{AB}\right)=\tan^{-1}\left(\dfrac{32}{24}\right)=\tan^{-1}\left(\dfrac{4}{3}\right)\approx53,13^o\)

Nên \(\widehat{HAC}\approx53,13^o\)

Ta có \(BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+32^2}=40\) cm

\(\Rightarrow IB=IC=20cm\)

Ta có \(CH=\dfrac{AC^2}{BC}=\dfrac{32^2}{40}=25,6cm\) 

\(AH=\dfrac{AB.AC}{BC}=\dfrac{24.32}{40}=19,2cm\)

Do vậy \(\dfrac{CI}{CH}=\dfrac{IK}{AH}\Rightarrow IK=\dfrac{CI.AH}{CH}=\dfrac{20.19,2}{25,6}=15cm\)

Mặt khác \(\dfrac{CI}{CH}=\dfrac{CK}{CA}\Rightarrow CK=\dfrac{CI.CA}{CH}=\dfrac{20.32}{25,6}=25cm\)

\(\Rightarrow C_{CIK}=CI+CK+IK\) \(=20+15+25=60cm\)

Mặt khác, \(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.24.32=384cm^2\)

Lại có \(\Delta CIK~\Delta CAB\left(g.g\right)\) \(\Rightarrow\dfrac{S_{CIK}}{S_{CAB}}=\left(\dfrac{IK}{AB}\right)^2=\left(\dfrac{15}{24}\right)^2=\dfrac{25}{64}\)

\(\Rightarrow S_{CIK}=\dfrac{25}{64}S_{CAB}=\dfrac{25}{64}.384=150cm^2\)

a: Xét ΔDMC vuông tại M và ΔABC vuông tại A có 

\(\widehat{C}\) chung

Do đó: ΔDMC\(\sim\)ΔABC