Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
BH=3^2/5=1,8cm
CH=5-1,8=3,2cm
c: ΔHBA đồng dạng với ΔABC
=>BH/BA=HA/AC
=>BH*AC=BA*HA
=>BH*AC=BD/2*2*AH=BD*AM
=>BH/AM=BD/AC
=>ΔBHD đồng dạng với ΔAMC
=>HD/MC=BD/AC
=>HD*AC=MC*BD
d: góc AMC=góc MHC+góc HCM
góc AMC=góc BHD
=>góc BHD=góc MHC+góc HCM
=>90 độ+góc MHD=90 độ+góc HCM
=>góc MHD=góc HCM
mà góc MCH+góc HMC=90 độ
nê góc MHD+góc HMC=90 độ
=>MC vuông góc HD
a)Xét tam giác HBA và tam giác ABC có:
Góc HBA=góc ABC=90°
Góc B - chung
=>Tam giác HBA đồng dạng tam giác ABC.
Chúc bạn học tốt
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
A B C 15 20 H M I D
có đôi chỗ mình làm tắt nhé, hình hết chỗ vẽ nên mình vẽ tạm xuống dưới nhé
a, Ta có : \(S_{AHM}=\frac{1}{2}.AH.HM\)(*)
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow BC^2=400+225=625\Rightarrow BC=25\)cm
Vì AM là đường trung tuyến : \(BM=CM=\frac{BC}{2}=\frac{25}{2}\)cm
Dễ có : \(AB^2=BH.BC\)( dựa vào tỉ số đồng dạng nhé )
\(\Rightarrow BH=\frac{AB^2}{BC}=9\)cm
Mà \(BM=BH+HM\Rightarrow HM=BM-BH=\frac{25}{2}-9=\frac{7}{2}\)cm
Lại có : \(BC=BH+CH\Rightarrow CH=BC-BH=25-9=16\)cm
Dễ có : \(AH^2=CH.BH=16.9=144\Rightarrow AH=12\)cm
Thay vào (*) ta được :
Vậy : \(S_{AHM}=\frac{1}{2}.12.\frac{7}{2}=\frac{84}{4}=21\)cm2
21 cm mik nghĩ tke