Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔBME vuông tại M và ΔBAC vuông tại A có
góc B chung
=>ΔBME đồng dạng với ΔBAC
b: Xét ΔMBE vuông tại M và ΔMNC vuông tại M có
góc MBE=góc MNC
=>ΔMBE đồng dạng với ΔMNC
=>MB/MN=ME/MC
=>MN*ME=MB*MC=1/4BC^2
=>BC^2=4*MN*ME
a) xét △ABC và △MBE có :
Góc BAC = Góc BME = 90 (Gt)
Góc B chung
⇒△ABC ∼ △MBE (g.g) (1)
b)Xét △ABC và △MCN có:
Góc BAC = góc NMC = 90 (Gt)
⇒△ABC ∼ △MBE (g.g) (2)
Ta có M là tđ của BC ⇒ MB =MC =1/2 BC
Từ (1) và (2) ⇒△MNC ∼ △MBE
⇒EM/MC = MN/BM
⇔ EM/MN = 1/2BC : 1/2BC
⇔BC2 =EM/MN : 4
⇔BC2 = EM/4MN
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a, cm góc BAC = góc BME =90°
Có góc B chung
Do đó tg abc~tg mbe
b, cm tam giác MBE đồng dạng vs tam giác MNC vì có BEM=MNC từ câu a.
=> MB.MC=MN.ME
=> MN.ME=MB^2=(BC/2)^2=(BC^2)/4
=> BC^2=MN.ME
c, tính bc= 15cm dựa Pytago
Suy ra mb=7.5cm
Từ tam giác ~ câu b suy ra be/ac=bm/ab
Thay vào, tính. BE=12.5
Tính ME dựa pytago tg bme vuông tại m