Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAM vuông tại A và ΔBHM vuông tại H có
BM chung
góc ABM=góc HBM
=>ΔBAM=ΔBHM
b: Xét ΔBDC có BA/BD=BH/BC
nên AH//DC
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) Xét \(\Delta ABC\)có AB = 5cm; AC = 12cm. Theo định lý Py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=5^2+12^2\)
\(BC^2=25+144\)
\(BC^2=169\)
\(BC=13\)
Vậy cạnh BC = 13cm
b)Xét tam giác AHD và tam giác AKD ta có:
\(\widehat{AHD}=\widehat{AKD}=90^o\)
AD chung
\(\widehat{DAH}=\widehat{DAK}\)(AD là tia phân giác)
=> tam giác AHD = tam giác AKD (g.c.g)
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH
b: Ta có: ΔBAD=ΔBHD
nên DA=DH
hay D nằm trên đường trung trực của AH(1)
Ta có: BA=BH
nên B nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra BD là đường trung trực của AH
hay BD⊥AH
Mình chỉ làm câu c, d thôi nha ( vì câu a, b bạn Nguyễn Lê Phước Thịnh làm rồi)
c) Xét tam giác ECK và tam giác ECA có:
EKC=EAC=90
EC cạnh chung
ECK=ECA ( vì CE là p/g của ABC)
=>Tam giác ECK=Tam giác ECA ( ch-gn)
=>CK=CA( 2 cạnh tương ứng)
Mà AB=HB( chứng minh a)
=>CK+BH=CA+AB
=>CH+KH+BK+HK=AC+AB
=>(BK+KH+CH)+HK=AC+AB
=>BC+HK=AB+AC (ĐPCM)
d) Ta có: \(\left\{{}\begin{matrix}CK=CA\left(theo.c\right)\\BA=BH\left(theo.a\right)\end{matrix}\right.\)=>Tam giác ACK cân tại C và tam giác ABH cân tại B
=>\(\left\{{}\begin{matrix}CAK=CKA=\dfrac{180-ACB}{2}\\BAH=BHA=\dfrac{180-ABC}{2}\end{matrix}\right.\)
Có: BAH+CAK=BAK+HAK+HAC+HAK=BAK+2HAK+HAC=\(\dfrac{180-ABC}{2}+\dfrac{180-ACB}{2}\)=\(\dfrac{360-\left(ABC+ACB\right)}{2}\)
=\(\dfrac{360-90}{2}=135\)
=>BAK+2HAK+HAC=135
Mà BAK+HAC=BAC-HAK=90-HAK
=>90-HAK+2HAK=135
=>90+HAK=135
=>HAK=45
a, xét tam giác AMB và tam giác AMC có:
AB=AC(gt)
\(\widehat{BAM}\) =\(\widehat{CAM}\)(gt)
AM chung
suy ra tam giác AMB= tam giác AMC(c.g.c)
b,xét tam giác AHM và tam giác AKM có:
AM cạnh chung
\(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)
suy ra tam giác AHM=tam giác AKM(CH-GN)
Suy ra AH=AK
c,gọi I là giao điểm của AM và HK
xét tam giác AIH và tam giác AIK có:
AH=AK(theo câu b)
\(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)
AI chung
suy ra tam giác AIH=tam giác AIK (c.g.c)
Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ
\(\Rightarrow\)HK vuông góc vs AM
a) Xét \(\Delta ABM\)và\(\Delta HBM\)có:\(\hept{\begin{cases}\widehat{BAM}=\widehat{BHM}=90^0\\BM\\\widehat{ABM}=\widehat{HBM}\end{cases}\Rightarrow\Delta ABM=\Delta HBM}\)(CẠNH HUYỀN GÓC NHỌN)
b)\(\Delta ABM=\Delta HBM\)(câu a)\(\Rightarrow BA=BH\)
Xét \(\Delta BAC\)và \(\Delta BHD\)có:\(\hept{\begin{cases}\widehat{BAC}=\widehat{BHD}=90^0\\BA=BH\\\widehat{B}\end{cases}\Rightarrow\Delta BAC=\Delta BHD\left(g.c.g\right)\Rightarrow AC=HD}\)
c)\(\Delta BAC=\Delta BHD\Rightarrow\hept{\begin{cases}BC=BD\\\widehat{ACB}=\widehat{HDB}\end{cases}}\)
Xét \(\Delta BMC\)và \(\Delta BMD\)có:\(\hept{\begin{cases}\widehat{MBC}=\widehat{MBD}\\BC=BD\\\widehat{BCM}=\widehat{BDM}\end{cases}\Rightarrow\Delta BMC=\Delta BMD\left(g.c.g\right)\Rightarrow MD=MC\Rightarrow\Delta MCD}\)CÂN
d)\(\Delta ABM=\Delta HBM\Rightarrow AM=HM\Rightarrow\Delta AHM\)CÂN\(\Rightarrow\widehat{MAH}=\widehat{MHA}=\frac{180^0-\widehat{AMH}}{2}\left(1\right)\)
\(\Delta MCD\)CÂN\(\Rightarrow\widehat{MDC}=\widehat{MCD}=\frac{180^0-\widehat{DMC}}{2}\left(2\right)\)
Mà \(\widehat{AMH}=\widehat{DMC}\)(Đối đỉnh) \(\left(3\right)\)
Từ (1) ; (2) và (3)\(\Rightarrow\widehat{MAH}=\widehat{MHA}=\widehat{MDC}=\widehat{MCD}\)(So le trong)\(\Rightarrow AH\)// \(CD\)
ỦNG HỘ MIK NHA BN!