K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔACI vuông tại C và ΔBHI vuông tại H có

\(\widehat{AIC}=\widehat{BIH}\)(hai góc đối đỉnh)

Do đó: ΔACI~ΔBHI

b: Ta có: ΔCAB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=25^2-15^2=400\)

=>\(CB=\sqrt{400}=20\left(cm\right)\)

Xét ΔABC có AI là phân giác

nên \(\dfrac{CI}{CA}=\dfrac{BI}{BA}\)

=>\(\dfrac{CI}{15}=\dfrac{BI}{25}\)

=>\(\dfrac{CI}{3}=\dfrac{BI}{5}\)

mà CI+BI=CB=20cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{CI}{3}=\dfrac{BI}{5}=\dfrac{CI+BI}{3+5}=\dfrac{20}{8}=2,5\)

=>\(CI=2,5\cdot3=7,5\left(cm\right)\)

c: Ta có: ΔACI~ΔBHI

=>\(\widehat{CAI}=\widehat{HBI}\)

mà \(\widehat{CAI}=\widehat{BAH}\)

nên \(\widehat{HBI}=\widehat{HAB}\)

Xét ΔHBI vuông tại H và ΔHAB vuông tại H có

\(\widehat{HBI}=\widehat{HAB}\)

Do đó: ΔHBI~ΔHAB

=>\(\dfrac{HB}{HA}=\dfrac{HI}{HB}\)

=>\(HB^2=HI\cdot HA\)

6 tháng 8 2020

شءشيلبتال

ءبسس

سللباتةتثعي

يسل

6 tháng 8 2020

A B C M H D

a, Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A , ta có :

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC^2=BC^2-AB^2\)

\(\Rightarrow AC^2=25^2-20^2\)

\(\Rightarrow AC^2=225\)

\(\Rightarrow AC=15cm\)

Vậy AC = 15cm .

b,Xét tam giác AMC và tam giác HMB có :

          góc MAC = góc MHB = 90độ

          góc AMC = góc HMB ( đối đỉnh )

Do đó : tam giác AMC đồng dạng với tam giác HMB ( g.g )

c,Xét tam giác ADB và tam giác AMC có :

           góc BAD = góc CAM = 90độ

           góc ABD = góc ACM ( vì tam giác AMC đồng dạng với tam giác HMB )

Do đó : tam giác ADB đồng dạng với tam giác AMC ( g.g )

\(\Rightarrow\frac{AC}{AB}=\frac{AM}{AD}\)

\(\Rightarrow AC.AD=AM.AB\)

d, Xét tam giác DBC có BA cắt HC tại M :

 \(CH\perp BD\)

\(BA\perp DC\)

\(\Rightarrow\)M là trực tâm của tam giác DBC

Vậy DM vuông góc với BC .

Học tốt

30 tháng 3 2022

a,Xét tam giác BAC và QEC có:

Góc ABC= Góc CQE

Góc C chung

Góc CQE= Góc CAB ( Vì Góc A + Góc B + Góc C = Góc CQE + Góc C + Góc QEC )

=> BAC đồng dạng với QEC(g-g)(đpcm)

b,

Theo định lý Py-ta-go ta có:

 Trong Tam giác ABC vuông tại B

Ta có: 

AB^2+BC^2=AC^2

=> AC^2=100

=> AC = 10

13 tháng 9 2023

a) Ta có: \(BD + DC = BC \Rightarrow DC = BC - BD = 25 - BD\)

Vì \(AD\) là phân giác của góc \(BAC\) nên theo tính chất đường phân giác ta có:

\(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} \Leftrightarrow \frac{{BD}}{{25 - BD}} = \frac{{15}}{{20}} \Leftrightarrow 20.BD = 15.\left( {25 - BD} \right) \Rightarrow 20.BD = 375 - 15.BD\)

\( \Leftrightarrow 20BD + 15BD = 375 \Leftrightarrow 35BD = 375 \Rightarrow BD = \frac{{375}}{{35}} = \frac{{75}}{7}\)

\( \Rightarrow DC = 25 - \frac{{75}}{7} = \frac{{100}}{7}\)

Vậy \(BD = \frac{{75}}{7}cm;DC = \frac{{100}}{7}cm\).

 Vì \(DE//AB\) nên \(\frac{{DC}}{{BC}} = \frac{{DE}}{{AB}} \Rightarrow \frac{{\frac{{100}}{7}}}{{25}} = \frac{{DE}}{{15}} \Leftrightarrow DE = \frac{{100}}{7}.15:25 = \frac{{60}}{7}\) (hệ quả của định lí Thales).

Vậy \(BD = \frac{{75}}{7}cm;DC = \frac{{100}}{7}cm;DE = \frac{{60}}{7}cm\).

b) Xét tam giác \(ABC\) có:

\(B{C^2} = {25^2} = 625;A{C^2} = {20^2} = 400;A{B^2} = {15^2} = 225\)

\( \Rightarrow B{C^2} = A{C^2} + A{B^2}\)

Do đó, tam giác\(ABC\) là tam giác vuông tại \(A\).

c) Diện tích tam giác \(ABC\) là

\({S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.15.20 = 150\left( {c{m^2}} \right)\).

Xét tam giác \(ADB\) và tam giác \(ABC\) ta có:

\(\frac{{BD}}{{BC}} = \frac{{\frac{{75}}{7}}}{{25}} = \frac{3}{7}\) và có chung chiều cao hạ từ đỉnh \(A\). Do đó, diện tích tam giác \(ADB\) bằng \(\frac{3}{7}\) diện tích tam giác \(ABC\).

Diện tích tam giác \(ADB\) là:

\({S_{ADB}} = 150.\frac{3}{7} = \frac{{450}}{7}\left( {c{m^2}} \right)\).

Diện tích tam giác \(ACD\) là:

\({S_{ACD}} = {S_{ABC}} - {S_{ADB}} = 150 - \frac{{450}}{7} = \frac{{600}}{7}\)

Vì \(ED//AB \Rightarrow \frac{{CE}}{{AE}} = \frac{{CD}}{{BD}} = \frac{{\frac{{100}}{7}}}{{\frac{{75}}{{100}}}} = \frac{4}{3}\)

Xét tam giác \(ADE\) và tam giác \(DCE\) ta có:

\(\frac{{CE}}{{AE}} = \frac{4}{3}\) và hai tam giác này có chung đường cao hạ từ \(D\).

Do đó, \(\frac{{{S_{ADE}}}}{{{S_{DCE}}}} = \frac{4}{3}\).

Diện tích tam giác \(ADE\) là

\({S_{ADE}} = \frac{{600}}{7}:\left( {3 + 4} \right).4 = \frac{{2400}}{{49}}\left( {c{m^2}} \right)\)

\({S_{DCE}} = \frac{{600}}{7}:\left( {3 + 4} \right).3 = \frac{{1800}}{{49}}\left( {c{m^2}} \right)\).

a: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=25/7

=>DB=75/7cm; DC=100/7cm

Xét ΔABC có DE//AB

nên DE/AB=CD/CB

=>DE/15=100/7:25=4/7

=>DE=60/7cm

b: Xét ΔABC có BC^2=AB^2+AC^2

nen ΔABC vuông tại A

=>S ABC=1/2*15*20=10*15=150cm2

c: DB/DC=3/7

=>S ABD/S ACB=3/7

=>S ABD=150*3/7=450/7cm2