K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

a) Xét tứ giác ACDB có:

+ M là trung điểm của BC (gt).

+ M là trung điểm của AD (MD = MA).
=> Tứ giác ACDB là hinhg bình hành (dhnb).

Mà ^BAC = 90o (Tam giác ABC vuông tại A).

=> Tứ giác ACDB là hình chữ nhật (dhnb).

=> AB // CD và CD \(\perp\) AC (Tính chất hình bình hành).

b) Trên tia đối của HA lấy E sao cho HE = HA (gt).

=> H là trung điểm của AE.

Xét tam giác CAE có:

+ CH là đường cao (CH \(\perp\) AE).

+ CH là đường trung tuyến (H là trung điểm của AE).

=> Tam giác CAE cân tại C.

=> CE = CA (Tính chất tam giác cân).

c) Ta có: CE = CA (cmt).

Mà CA = DB (Tứ giác ACDB là hình chữ nhật).

=> CE = DB (= CA).

d) Xét tam giác ADE có:

+ M là trung điểm của AD (MD = MA).

+ H là trung điểm của AE (gt).

=> MH là đường trung bình.

=> MH // DE (Tính chất đường trung bình trong tam giác).

Mà MH \(\perp\) AE (do AH \(\perp\) BC).

=> DE \(\perp\) AE (đpcm).

1 tháng 3 2018

a)xét tam giác ABM và tam giác DCM có:

BN=CM(GT)

góc BMA=góc CMD(đđ)

AM-DM(GT)

\(\Rightarrow\)tam giác ABM=tam giác DCM(c.g.c)

1 tháng 3 2018

b)theo câu a: tam giác ABM=tam giác DCM

\(\Rightarrow\)góc BAM= góc MDC(2 góc tương ứng)

mà đây là cặp góc so le trong

\(\Rightarrow\)AB//CD

\(\Rightarrow\)góc BAC= góc ACD=90 độ\(\Rightarrow\)CD \(\perp\)AC

c) xét tam giác AHC và tam giác EHC có:

AH=EH(GT)

góc AHC=góc EHC=90 độ

HC chung

\(\Rightarrow\)tam giác AHC = tam giác EHC(c.g.c)

\(\Rightarrow\)CA=CE(2 cạnh tương ứng)

\(\Rightarrow\)tam giác CAE cân tại C

26 tháng 3 2020
  • linhhlin

Đáp án:

 a) Xet tam giac AMB va tam giac DMC co:

AM = DM (gt) 

goc AMB = goc DMC ( vi hai goc doi dinh ) 

CM = BM( vi M la trung diem cua CB) 

=> tam giac AMB = tam giac DMC ( c-g-c ) 

=>goc MAB = goc MCD ( hai goc tuong ung ) 

Ma hai goc nay o vi tri so le trong nen CD //AB

Lai co: goc CAB = 90 do => goc ACB = 90 do

=> CD vuông góc AC(dpcm ) 

26 tháng 3 2020

Đáp án:

 a) Xet tam giac AMB va tam giac DMC co:

AM = DM (gt) 

goc AMB = goc DMC ( vi hai goc doi dinh ) 

CM = BM( vi M la trung diem cua CB) 

=> tam giac AMB = tam giac DMC ( c-g-c ) 

=>goc MAB = goc MCD ( hai goc tuong ung ) 

Ma hai goc nay o vi tri so le trong nen CD //AB

Lai co: goc CAB = 90 do => goc ACB = 90 do

=> CD vuông góc AC(dpcm ) 

  Chúc bạn học tốt !

28 tháng 11 2021

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

21 tháng 2 2016

toán bình thường phải ko chế

13 tháng 3 2018

A D B C H M E

a/ Xét 2 tam giác MDC và MAB có MA=MD (gt), MB=MC (gt), góc DMC=góc AMB (đối đỉnh)

=> tam giác MDC = tam giác MAB

=> Góc CBA=góc BCD (Góc tương ứng)

Xét \(\Delta ABC\)\(\widehat{CBA}+\widehat{ACB}=90^0\)(Tính chất Tam giác vuông)

=> \(\widehat{BCD}+\widehat{ACB}=90^0=\widehat{ACD}\) => \(CD\perp AC\)

b/ Xét 2 tam giác vuông CHE và CHA có: CH (chung); HE=HA (gt); Tam giác vuông tại H

=> \(\Delta CHE=\Delta CHA\)=> CA=CE (2 cạnh tương ứng) => \(\Delta CAE\)cân tại C