K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

Đề sai nhá bạn,câu a,b không nói nữa rồi,ý mình là câu c ấy :D

Nếu bạn không tiện dùng tay so sánh thì mình sẹ chứng minh cho bạn xem

Hạ CT vuông góc với MK

Theo tính chất hình chữ nhật thì MC=AT mà dễ dàng chỉ ra được AT < AK nên đề sai

loading...  loading...  loading...  

a: Xét tứ giác AMHK có

góc AMH=góc AKH=góc KAM=90 độ

=>AMHK là hình chữ nhật

=>AH=MK

b: Xét ΔAHD có

AB vừa là đường cao, vừa là trung tuyến

nên ΔAHD cân tại A

=>AH=AD và AB là phân giác của góc HAD(1)
Xét ΔHEA có

AC vừa là đường cao, vừa là trung tuyến

nên ΔAHE cân tại A

=>AH=AE và AC là phân giác của góc HAE(2)

Từ (1), (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

mà AD=AE

nên A là trung điểm của DE

c: Xét ΔAHB và ΔADB có

AH=AD

góc HAB=góc DAB

AB chung

=>ΔAHB=ΔADB

=>góc ADB=90 dộ

=>BD vuông góc DE(3)

Xét ΔAHC và ΔAEC có

AH=AE

góc HAC=góc EAC

AC chung

=>ΔAHC=ΔAEC

=>goc AEC=90 độ

=>CE vuông góc ED(4)

Từ (3), (4) suy ra BD//CE

Triệu hồi các cao nhân giải giúp mình câu d nhé! Mình không cần mấy câu kia nhưng mình vẫn ghi ra để làm nền làm câu d. Gíup mình nha mình phải ôn thi học kỳ, cám ơn mọi người trước nhé. Chúc buổi tối vui vẻ! :)) ^^. Nếu không các bạn cũng có thể ib mình qua facebook: https://www.facebook.com/hoang.anh.04032003 mình sẵn sàng rep nhé Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH. Gọi I là trung điểm...
Đọc tiếp

Triệu hồi các cao nhân giải giúp mình câu d nhé! Mình không cần mấy câu kia nhưng mình vẫn ghi ra để làm nền làm câu d. Gíup mình nha mình phải ôn thi học kỳ, cám ơn mọi người trước nhé. Chúc buổi tối vui vẻ! :)) ^^. Nếu không các bạn cũng có thể ib mình qua facebook: https://www.facebook.com/hoang.anh.04032003 mình sẵn sàng rep nhé 

Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH. Gọi I là trung điểm của HC, K là điểm đối xứng với A qua I

a) Chứng minh: AHKC là hình bình hành

b)Từ H kẻ HM vuông góc với AB (M thuộc AB), kẻ HN vuông góc với AC (N thuộc AC). Gọi O là giao điểm của AH và MN. Chứng minh tứ giác AHMN là hình chữ nhật và góc OAN = góc ONA

c) chứng minh tứ giác NCKM là hình thang cân

d) Gọi D là giao điểm của CO và AK. Chứng minh AK= 3.AD

 

0
Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K