Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tg ABC có N là trung điểm AC; E là trung điểm AB => NE là đường trung bình tgABC =>NE = 1/2 BC (1)
Tg ABC vuông tại A có AM là đường trung tuyến ứng với BC => AM = 1/2 BC (2)
Từ (1) và (2) => AM = EN => AEMN là hình thang cân. Lại có EAN =90 => AEMN là hình chữ nhật.
b) Do EN là đường trung bình tgABC => EN ss BC <=> EN ss MH => EHMN là hình thang (5)
Xét tgABC có N là trung điểm AC; M là trung điểm BC => NM =1/2.AB (3)
Tg AHB vuông ở H; HE là đường trung tuyến ứng với AB trong tg => HE = 1/2.AB (4)
Từ (3) và (4) => EH=MN. Kết hợp với (5) => EHMN là hình thang cân
c)Tg AHC vuông tại H; HN là đường trung tuyến úng với AC => HN = 1/2.AC => HN = AN (=1/2.AC)
=> Tg ANH cân tại N => HAN = NHA
CMTT => HAE = EHA
=> NHA + EHA = HAN + HEA = EAN = 90
Chú ý : Mk ko biết vẽ hình trên này nên bn tự vẽ nha! Đợi mk nghĩ nốt ý d) nhé!
Kí tự: tg(Tg) là tam giác; ss là song song
Chọn cho mik :)
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC