Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
A B C M D I
a) Xét tam giác ABD và tam giác MBD có:
AB = AM ( gt )
\(\widehat{ABD}=\widehat{DBC}\)( Do BD phân giác )
Cạnh BD chung
=>Tam giác ABD = tam giác MBD ( c.g.c )
b) Vì tam giác ABD = tam giác MBD ( cmt )
=> \(\widehat{BAD}=\widehat{BMD}\)
Mà \(\widehat{BAD}=90^0\)
=> \(\widehat{BAD}=\widehat{BMD}=90^0\)
=> DM vuông góc với BC
d) Gọi AO là tia đối của tia AB
Xét tam giác ABC có:
\(\widehat{OAC}=\widehat{ABC}+\widehat{BCA}\)
=> \(\widehat{OAC}>\widehat{BCA}\) (1)
Ta có: \(\widehat{OAC}+\widehat{BAC}=180^0\)( hai góc kề bù )
\(\widehat{CMD}+\widehat{BMD}=180^0\)( hai góc kề bù )
Mà \(\widehat{BAC}=\widehat{BMD}\)( cmt )
=> \(\widehat{OAC}=\widehat{CMD}\) (2)
Từ (1) và (2) => \(\widehat{CMD}>\widehat{BCA}\)
Xét tam giác MDC có:
\(\widehat{CMD}>\widehat{BCA}\)
Theo quan hệ giữa góc và cạnh đối diện có:
DC > DM
Mà DM > AD ( Do tam giác ABD = tam giác MBD )
=> DC > AD
Vậy DC > AD.
d) Xét tam giác ABI và tam giác MBI có:
AB = AM ( gt )
\(\widehat{ABI}=\widehat{MBI}\)( Do BD phân giác )
BI chung
=> Tam giác ABI = tam giác MBI ( c.g.c )
=> \(\widehat{BIA}=\widehat{BIM}\)
Mà \(\widehat{BIA}+\widehat{BIM}=180^0\)( Hai góc kề bù )
=> \(\widehat{BIA}=\widehat{BIM}=\frac{180^0}{2}=90^0\)
=> BI vuông góc AM (3)
Vì tam giác ABI = tam giác MBI ( cmt )
=> AI = IM (4)
Từ (3) và (4) => BI là trung trực của AM
Mà I thuộc BD
=> BD là đường trung trực của AM ( đpcm )
# Học tốt #
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D
Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH
=> điểm B, E cách đều 2 mút của đoạn thẳng AH
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
Bạn tự vẽ hình nha!!!
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
57 !
mk chac chan do
57 nhé