Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AB.cosB + cosC.AC=\(\frac{AB^2}{BC}+\frac{AC^2}{BC}\)=\(\frac{BC^2}{BC}\)=BC
b) CMR: tam giác ABC đồng dạng với tam giác AFE(g-g)
\(\Rightarrow\)\(\frac{AB}{AF}=\frac{BC}{EF}\)
\(\Rightarrow\)AB.EF=BC.AF
CMR: tam giác ABH đồng dạng với tam giác AHE (g-g)
\(\Rightarrow\)\(\frac{AB}{AH}=\frac{AH}{AE}\)
\(\Rightarrow\)\(\frac{AH}{AE}=\frac{AH.AB}{AH^2}\)\(\Rightarrow\)\(\frac{AH}{AE}=\frac{EF.AB}{AH^2}\)
\(\Rightarrow\)\(\frac{AH}{AE}=\frac{AF.BC}{AH^2}\)\(\Rightarrow\frac{AH^3}{BC}=AE.AF\)
Ta có:\(S_{AEHF}=AE.AF\)
\(\Rightarrow S_{AEHF}=\frac{AH^3}{BC}\)
a, \(vì\)AD là phân giác suy ra góc BAD =góc DAC =45 ĐỘ
cos45 độ = AD/AB =4 /AB =1/ căn 2 suy ra AB =4 NHÂN CĂN 2
TH TỰ dùng sin 45 độ =dc/ac =5/ad =1/căn 2 suy ra AC =5 CĂN 2 ÁP DỤNG PITA GO TÌM RA CẠNH bc
b,
a) Tam giác ABH vuông tại H, HE là đường cao
\(\Rightarrow AH^2=AE.AB\)(1)
Tam giác AHC vuông tại H, HF là đường cao
\(\Rightarrow AH^2=AF.AC\)(2)
từ (1) và (2) nên AE.AB=AF.AC(đpcm)
b) Tam giác ABC vuông tại A, AH là đường cao
\(\Rightarrow AB^2=BH.BC\)(3)
Tam giác BIC vuông tại B, BA là đường cao
\(\Rightarrow AB^2=IA.IC\) mà theo (3) thì \(BH.BC=IA.IC\left(\text{đ}pcm\right)\)
c) Tam giác ABC vuông tại A, đường cao AH
\(AH^2=BH.CH\Leftrightarrow AH^2=9.16=144\Leftrightarrow AH=12\)(cm)
BC=9+16=25(cm)
Tam giác ABC vuông tại A, AH là đường cao
\(AB^2=BH.BC=9.25=225\Leftrightarrow AB=15\)
\(AC^2=CH.BC=16.25=400\Leftrightarrow AC=20\)
Tam giác ABC có AD là phân giác
\(\frac{AB}{AC}=\frac{BD}{CD}\Leftrightarrow\frac{15}{20}=\frac{BD}{CD}\Leftrightarrow\frac{15}{BD}=\frac{20}{CD}=\frac{15+20}{BD+CD}=\frac{35}{25}=\frac{7}{5}\)
\(\Leftrightarrow BD=\frac{15.5}{7}=\frac{75}{7}\)\(\Leftrightarrow DH=BD-BH=\frac{75}{7}-9=\frac{12}{7}\)
Áp dụng định lý Py-ta-go vào tam giác vuông AHD:
\(AD^2=DH^2+AH^2=\frac{144}{49}+144=\frac{7200}{49}\Rightarrow AD=\frac{60\sqrt{2}}{7}\)
d) Tam giác ABC vuông tại A, AH là đường cao
\(AB^2=BH.BC\);\(AC^2=CH.BC\)
\(\Rightarrow\frac{AB^2}{AC^2}=\frac{HB.BC}{CH.BC}=\frac{BH}{CH}\left(\text{đ}pcm\right)\)
Còn câu e chờ mình xíu
c) Ta sẽ chứng minh bổ đề sau để dễ dàng tính: Cho \(\Delta\)ABC vuông tại A đường phân giác AD. Chứng minh: \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
C/m: Tự kẻ hình nha .Kẻ DH // AB => DH vuông góc AC. Vì \(\Delta\)ADH vuông tại H có góc DAH=90 nên \(\Delta\)ADH vuông cân tại H
=> \(AD=\sqrt{2}DH\Rightarrow DH=\left(\frac{AD}{\sqrt{2}}\right)\)
Ta có DH // AB => \(\frac{DH}{AB}=\frac{HC}{AC}=\frac{AC-AH}{AC}\) vì (HC=AC-AH)
mik ko bít
I don't now
................................
.............
biết chết liền