Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔBAC vuông tại B có BH là đường cao
nên \(HA\cdot HC=BH^2\left(1\right)\)
Xét ΔBHC vuông tại H có HE là đường cao
nên \(BE\cdot BC=BH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)
2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(1\right)\)
Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC
nên \(AD\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
b) Xét ΔABC có AE là tia phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BE}{3}=\dfrac{CE}{4}\)
mà BE+CE=BC=5cm(gt)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BE}{3}=\dfrac{5}{7}\\\dfrac{CE}{4}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BE=\dfrac{15}{7}\left(cm\right)\\CE=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BE=\dfrac{15}{7}cm;CE=\dfrac{20}{7}cm\)
mình hướng dẫn nhé
a) sử dụng hệ thức lượng trong \(\Delta\) vuông. Đây là tính cạnh
còn tính góc thì sử dụng hệ thức giữa cạnh và góc
áp dụng công thức là làm đc đấy mà
b) sử dụng tính chất 2 tiếp tuyến cắt nhau rồi xét \(\Delta\)có tia phân giác đồng thời là đường cao, đường trung trực
c) chứng minh tiếp tuyến ta chứng minh \(\Delta\)vuông
d) mình chưa nghĩ ra nhưng chắc là sử dụng hệ thức lượng quy về \(\Delta\)
vuông
ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có AH2=CH.BH=ab (1)
Gọi M là trung điểm của BC.
Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)
Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)
Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)
A B C I E H M
Số tự thêm ha
a/ Xét tam giác ABC, áp dụng Định lí Pitago đảo:
\(AB^2+AC^2\)
\(=9^2+12^2=225=15^2=BC^2\)
=> Tam giác ABC vuông
b/ Xét tam giác ABCvuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)(định lí 4)
\(\frac{1}{AH^2}=\frac{1}{9^2}+\frac{1}{12^2}=\frac{25}{1296}\)
\(\Rightarrow AH^2=\frac{1296}{25}\Rightarrow AH=7,2\)(cm)
Xét tam giác ABC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(AB^2=BH\cdot BC\)(đinh lí 1)
\(9^2=BH\cdot15\)
\(\Rightarrow BH=5,4\)(cm)
c/ Xét tam giác ABH vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(AH^2=AE\cdot AB\)(định lí 1) [1]
Xét tam giác AHC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(AH^2=AI\cdot IC\)(đinh lí 1) [2]
Từ [1], [2] \(\Rightarrow AE\cdot AB=AI\cdot AC\)(đpcm)
d/ Gọi M là đường trung tuyến tam giác ABC
\(\Rightarrow BM=MC=\frac{BC}{2}=AM\)
Xét tam giác ABC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
: \(AH^2=BH\cdot HC\)(định lí 2)
\(\Rightarrow\sqrt{BH\cdot HC}=\sqrt{AH^2}=AH\)
Mà \(AH\le AM\)( AH = AM với trường hợp AH trùng AM )
\(\Rightarrow\sqrt{HB\cdot HC}\le\frac{BC}{2}\)(đpcm)
p/s Hình hơi xấu nhé, thông cảm >:
Ahwi:
Bài d nếu thay số vào thì có được không bạn? do mik thấy các cạnh trên đều tìm được??
a) \(tanB=\frac{AC}{AB}=\frac{4}{3}\Rightarrow B\approx53^0\)
\(C=90^0-B\approx37^0\)
Áp dụng định lí PYTAGO cho tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2=9^2+12^2=225\Rightarrow BC=15cm\)
Có \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\Rightarrow AH=\frac{AB.AC}{BC}=7,2cm\)
b) Vì AD là phân giác tại A của tam giác ABC nên:
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)
Mà \(BD+CD=BC=15\)
\(\Rightarrow\hept{\begin{cases}BD=\frac{45}{7}\approx6,4cm\\CD=\frac{60}{7}\approx8,6cm\end{cases}}\)
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=6(cm)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1}{2}\)
\(\Leftrightarrow\widehat{C}=30^0\)
hay \(\widehat{B}=60^0\)