K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2022

a, Xét tam giác AHC và tam giác BAC 

^C _ chung 

^AHC = ^BAC = 900

Vậy tam giác AHC ~ tam giác BAC (g.g) 

b, Xét tam giác AHB và tam giác CHA 

^AHB = ^CHA = 900

^HAB = ^HCA ( cùng phụ ^HAC ) 

Vậy tam giác AHB~ tam giác CHA (g.g) 

c,Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=40cm\)

\(\dfrac{AH}{AB}=\dfrac{AC}{BC}\)( tỉ số đồng dạng của a ) 

\(AH=\dfrac{AB.AC}{BC}=\dfrac{96}{5}cm\)

\(\dfrac{AH}{CH}=\dfrac{AB}{AC}\)( tỉ số đồng dạng của b ) 

\(CH=\dfrac{AH.AC}{AB}=\dfrac{128}{5}cm\)

\(\rightarrow BH=BC-CH=\dfrac{72}{5}cm\)

8 tháng 6 2023

a. Xét ΔHBA và ΔABC:

         \(\widehat{H}=\widehat{A}=90^0\left(gt\right)\) 

          \(\widehat{B}chung\) 

\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g) 

b. Vì ΔABC vuông tại A:

Theo đ/lí Py - ta - go ta có:

   \(BC^2=AB^2+AC^2\) 

   \(BC^2=12^2+16^2\) 

   \(BC^2=400\) 

\(\Rightarrow BC=\sqrt{400}=20cm\) 

Ta có: ΔHBA \(\sim\) ΔABC 

    \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Rightarrow\dfrac{AH}{16}=\dfrac{12}{20}\) 

\(\Rightarrow AH=9,6cm\) 

c. Ta có DE là đường phân giác \(\widehat{ADB}\) 

\(\rightarrow\dfrac{EA}{EB}=\dfrac{DA}{DB}\left(1\right)\) 

DF là đường phân giác \(\widehat{ADC}\) 

\(\rightarrow\dfrac{FC}{FA}=\dfrac{DC}{DA}\left(2\right)\) 

AD là đường phân giác \(\widehat{ABC}\) 

\(\rightarrow\dfrac{DC}{DB}=\dfrac{AC}{AB}\left(3\right)\) 

Từ (1) và (2),(3) \(\Rightarrow\) \(\dfrac{EA}{EB}.\dfrac{FC}{FA}.\dfrac{DB}{DC}=\dfrac{DA}{DB}.\dfrac{DC}{DA}.\dfrac{AC}{AB}\)  

\(\Rightarrow\dfrac{EA}{EB}.\dfrac{FC}{FA}.\dfrac{DC}{DB}=\dfrac{DB}{DC}.\dfrac{AC}{AB}=\dfrac{AB}{AC}.\dfrac{AC}{AB}=1\) 

Vậy ... 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b:BC=căn 12^2+16^2=20cm

AH=12*16/20=9,6cm

8 tháng 2 2019

a) Ta có: AB^2 + AC^2 = 21^2 + 28^2 = 35^2 = BC^2 
Vậy Tam giác ABC vuông tại A (đl Pytago đảo) 
b) Ta có: Góc B + góc C = 90 độ (cmt câu a) 
Góc HAC + góc C = 90 độ (Tam giác HAC vuông tại H) 
=> Góc B = góc HAC 
Mà Góc AHB= Góc AHC = 90 độ (Đường cao AH) 
Vậy Tam giác HBA ~ tam giác HAC (góc - góc) 
c) 
Theo tính chất đường phân giác trong tam giác: 
MB/ AB = MC / AC 
<=> MB. AC = MC . AB 
<=> MB . AC = (35- MB) . AB 
<=> 35AB= MB.(AB+AC) 
<=> MB = 35AB/(AB+AC) = 35.21/(21+28) = 15 cm 
=> MC= 35 - 15 = 20 cm 
Vậy MB = 15 cm, MC 20 cm 
(Bạn tự vẽ hình và ghi giả thuyết kết luận nhé!)

11 tháng 2 2019

Bạn ơi vẽ hình làm sao ạ

25 tháng 3 2019

a)Hai tam giác vuông  \(\Delta AHC\approx\Delta BKC\)vì có chung góc nhọn C

b) Vì tam giác AHC đồng dạng tam giác BKC nên

\(\frac{AH}{BK}=\frac{HC}{KC}=\frac{AC}{BC}=\frac{4}{3}\)

Theo định lý Pytago ta có 

\(AH=\sqrt{8^2-3^2}=\sqrt{55}\)

\(\frac{AH}{BK}=\frac{\sqrt{55}}{BK}=\frac{4}{3}\)

\(\Rightarrow BK=\frac{3\sqrt{55}}{4}\)

Theo Pytago ta có

\(KC=\sqrt{6^2-\left(\frac{3\sqrt{55}}{4}\right)^2}=\frac{9}{4}\left(cm\right)\)

\(KA=8-\frac{9}{4}=\frac{23}{4}\left(cm\right)\)

13 tháng 5 2016

a. tg AHC ~ tg BHA ( g-g)
b. BC= 25
    AH= 12
c. MN là đường trung bình của tg HBA nên MN // A​​​​B (1)
 mặt khác AB vuông AC (2)
 1,2 ---> MN vuông AC
  Tam giác MAC có MN vuông AC, AH vuông MC ---> N là trực tâm
 do đó CN vuông AM (đpcm)

1 tháng 3 2020

A B C H E F I K 1 1 1

a) Áp dụng địnhh lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=4,8\left(cm\right)\)

b)  Xét tam giác AEH và tam giác AHB có:

\(\hept{\begin{cases}\widehat{A1}chung\\\widehat{AEH}=\widehat{AHB}=90^0\end{cases}\Rightarrow\Delta AEH~\Delta AHB\left(g.g\right)}\)

c) Xét tam giác AHC và tam giác AFH có:

\(\hept{\begin{cases}\widehat{HAC}chung\\\widehat{AHC}=\widehat{AFH}=90^0\end{cases}\Rightarrow\Delta AHC~\Delta AFH\left(g.g\right)}\)

\(\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\)( các đoạn t.ứng tỉ lệ ) 

\(\Rightarrow AH^2=AC.AF\)

d) Xét tứ giác AEHF có:

\(\hept{\begin{cases}\widehat{AEH}=90^0\\\widehat{EAF}=90^0\\\widehat{AFH}=90^0\end{cases}\Rightarrow AEHF}\)là hình chữ nhật ( dhnb)

\(\Rightarrow EF\)là đường phân giác của góc AEH và AH là đường phân giác của góc EHF (tc hcn )

\(\Rightarrow\widehat{E1}=\frac{1}{2}\widehat{AFH},\widehat{H1}=\frac{1}{2}\widehat{EHF}\)

Mà \(\widehat{AEH}=\widehat{EHF}\left(tc\right)\)

\(\Rightarrow\widehat{E1}=\widehat{H1}\) (3)

Vì tam giác AHC vuông tại H nên \(\widehat{HAC}+\widehat{C}=90^0\)( 2 góc phụ nhau ) (1)

Vì tam giác AFH vuông tại F nên \(\widehat{HAF}+\widehat{H1}=90^0\)( 2 góc phụ nhau ) (2)

Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{H1}\)(4)

Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{E1}\)

Xét tam giác ABC và tam giác AFE có:

\(\hept{\begin{cases}\widehat{A}chung\\\widehat{C}=\widehat{E1}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta AFE\left(g.g\right)}\)

e) vÌ \(\Delta ABC~\Delta AFE\left(cmt\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AF}{AE}\)( các đoạn t.ứng tỉ lệ ) (5)

Xét tam giác ABC có AK là đường phân giác trong của tam giác ABC

\(\Rightarrow\frac{BK}{KC}=\frac{AB}{AC}\)( tc)  (6)

Xét tam giác AEF có AI là đường phân giác trong của tam giác AEF

\(\Rightarrow\frac{IF}{IE}=\frac{AF}{AE}\)(tc)  (7)

Từ (5) ,(6) và (7) \(\Rightarrow\frac{BK}{KC}=\frac{IF}{IE}\)

\(\Rightarrow KB.IE=KC.IF\left(đpcm\right)\)

30 tháng 7 2018

a, \(\Delta ABC\)và \(\Delta HBA\)có:

\(\widehat{ABC}=\widehat{AHB}=90^o\)

\(\widehat{BAC}\) chung

\(\Rightarrow \Delta ABC \sim \Delta HBA\) (g-g) 

b, Ta có: \(\Delta ABC \sim \Delta HBA\) (g-g) \(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)\(\Rightarrow AB.AC=AH.BC\)

c, \(\Delta ABC\)có: \(\widehat{BAC}=90^o\)

\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)

hay \(10^2=6^2+AC^2\)

       \(AC^2=64\)

       \(AC=8\left(cm\right)\)

Ta có: \(\frac{AC}{AH}=\frac{BC}{AB}\left(cmt\right)\Leftrightarrow\frac{8}{AH}=\frac{10}{6}\Leftrightarrow AH=4,8\left(cm\right)\)

\(\Delta AHC\)có: \(\widehat{AHC}=90^o\)

\(\Rightarrow AC^2=AH^2+HC^2\)(định lý Py-ta-go)

hay \(8^2=4,8^2+HC^2\)

       \(HC^2=40,96\)

       \(HC=6,4\left(cm\right)\)