Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{DBC}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)
mà \(\widehat{DCB}=30^0\)
nên \(\widehat{DBC}=\widehat{DCB}\)
hay ΔDBC cân tại D
a: Xét ΔABD và ΔACD có
AB=AC
góc BAD=goc CAD
AD chung
=>ΔABD=ΔACD
b: ΔABD=ΔACD
=>BD=CD
c: ΔACB cân tại A
mà ADlà trung tuyến
nên AD vuông góc BC
Tam giác ABC có góc B = góc C
=> ABC là tam giác cân (hai góc kề cạnh đáy bằng nhau)
=> AB = AC
Xét hai tam giác BAD và CAD có:
AC = AB (cmt)
góc BAD = góc CAD (AD là phân giác của góc A)
góc B = góc C (gt)
=> tam giác BAD = tam giác CAD (g.c.g)
=> DB = DC
a) Vì BC=2 AB
Mà E là trung điểm của BC
=> AB= BE = EC
Xét ΔABD và ΔEBD có:
AB=BE (cmt)
góc A1 = góc A2(gt)
BD: cạnh chung
=> ΔABD=ΔEBD (c.g.c)
=> góc ADB= góc EDB
=> DB là tia pg của góc ADE
b) VÌ ΔABD=ΔEBD( cmt)
=> góc BAD= góc BED=90
Mà : góc DEB + góc DEC=180
=> góc DEB= góc DEC
Xét ΔDEB và ΔDEC có:
DE:cạnh chung
góc DEB = góc DEC(cmt)
BE=CE(gt)
=> ΔDEB=ΔDEC(c.g.c)
=> BD=DC
c) Vì ΔDEB=ΔDEC(cmt)
=> góc B2= góc C
Mà: góc B+ góc C=90
<=> 2 B2+ góc C=90
<=> 3 góc B2=90
<=> B2=30
Vậy: góc C=góc B2=30; góc B= 2.B2=2.30=60