K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2021

Kẻ đường cao AD \(\Rightarrow IH\parallel AD(\bot BC)\)

mà I là trung điểm AB nên H là trung điểm BD

Ta có: \(HC^2-HB^2=\left(HC-HB\right)\left(HC+HB\right)=\left(HC-DH\right).BC\)

\(=CD.BC\)

tam giác ABC vuông tại A có đường cao AD nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CD.BC\Rightarrow\) đpcm

undefined

 

27 tháng 7 2021

bạn ơi ng ta kêu cm hc^2-hb^2=ac^2

 

a: BC=BH+CH

=2+8

=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>DE=AH

c: ΔHDB vuông tại D 

mà DM là đường trung tuyến

nên DM=HM=MB

\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)

\(=\widehat{EAH}+\widehat{MHD}\)

\(=90^0-\widehat{C}+\widehat{C}=90^0\)

=>DE vuông góc DM

a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

XétΔABC vuông tại A có \(\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

=>\(\widehat{B}\simeq53^0\)

b: \(AH=\dfrac{AB\cdot AC}{BC}=2.4\left(cm\right)\)

\(HB=\dfrac{BA^2}{BC}=\dfrac{3^2}{5}=1.8\left(cm\right)\)

HC=BC-HB=3,2(cm)

c: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔHCA vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

d: Xét tứgiác AMHN có \(\widehat{AMH}+\widehat{ANH}=180^0\)

nên AMHN là tứ giác nội tiếp

Xét (AH/2) có

\(\widehat{ANM}\) là góc nội tiếp chắn cung AM

\(\widehat{AHM}\) là góc nội tiếp chắn cung AM

DO đó: \(\widehat{ANM}=\widehat{AHM}=\widehat{B}\)

Ta có: ΔABC vuông tại A

mà AE là đường trung tuyến

nên AE=CE
=>\(\widehat{EAC}=\widehat{C}\)

\(\widehat{ANM}+\widehat{EAC}=\widehat{B}+\widehat{C}=90^0\)

=>AE\(\perp\)MN

2 tháng 9 2017

tự vẽ hình nha bn

a. Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)(Theo định lí Pytago, tam giác ABC vuông tại A)

b. Ta có: \(\frac{BH}{CH}=\frac{3}{4}\)

\(\Leftrightarrow\frac{BH+CH}{CH}=\frac{3}{4}+1\)

\(\Leftrightarrow\frac{BC}{CH}=\frac{7}{4}\)\(\Leftrightarrow\frac{5}{CH}=\frac{7}{4}\)\(\Leftrightarrow CH=\frac{5.4}{7}=\frac{20}{7}\)

\(\Rightarrow BH=5-\frac{20}{7}=\frac{15}{7}\)

3 tháng 9 2017

c,d bạn giải giùm mình được không

23 tháng 2 2018

Xét \(\Delta\)BHI có: góc HBI = 45o ( vì tam giác ABC vuông cân tại A)

                      và góc BHI = 90o ( vì HI \(\perp\)BA )

=> tam giác BHI vuông cân tại H => HB = HI (1)

Xét tứ giác HIKA có góc H = góc A = góc K = 90o => tứ giác HIKA là hình chữ nhật => AK = HI (2)

Từ (1) và (2), ta có: AK = HB

Ta có: M là trung điểm của BC (gt) => AM vừa là đường cao và cũng là đường phân giác => góc BAM = Góc MAC = 45o

Xét \(\Delta\)HBM và \(\Delta\)KAM có:

HB =AK ( c.m.t)

góc B = góc A  ( cùng bằng 45o )

MB = AM ( vì AM là trung tuyến của tam giác ABC vuông cân tại A) 

=> \(\Delta HBM=\Delta KAM\)(c.g.c)

=>HM = MK ( cặp cạnh tương ứng) => tam giác MHK cân (3)

=> góc BMH = góc AMK ( cặp góc tương ứng)

mà góc KMC + góc AMK = 90o => KMC + BMH = 90o => góc HMK = 90o (góc kề bù) (4)

Từ 3 và 4, ta được: tam giác MHK vuông cân tại M (đpcm)

23 tháng 2 2018

Bạn và hình giúp mình đc ko?  

P/s : cảm ơn bạn rất nhiều

28 tháng 7 2023

A B H D E C I

a/

\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AH=\sqrt{HB.HC}=\sqrt{4.9}=6cm\)

\(\tan\widehat{ABC}=\dfrac{AH}{HB}=\dfrac{6}{4}=\dfrac{3}{2}\)

b/

Xét tg vuông AHB có

\(HB^2=BD.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông AHC có

\(HC^2=CE.AC\) (lý do như trên)

\(CE.BD.AC.AB=HB^2.HC^2=\left(HB.HC\right)^2\)

Mà \(HB.HC=AH^2\) (cmt)

\(\Rightarrow CE.BD.AC.AB=AH^4\)

c/

\(HD\perp AB;AC\perp AB\) => HD//AC => HD//AE

\(HE\perp AC;AB\perp AC\) => HE//AB => HE//AD

=> ADHE là hình bình hành mà \(\widehat{A}=90^o\) => ADHE là HCN

Xét tg vuông ADH và tg vuông ADE có

HD = AE (cạnh đối HCN)

AD chung

=> tg ADH = tg ADE (Hai tg vuông có 2 cạnh góc vuông = nhau)

\(\Rightarrow\widehat{AED}=\widehat{AHD}\) 

\(\widehat{AHD}=\widehat{B}\) (cùng phụ với \(\widehat{BAH}\) ) 

\(\Rightarrow\widehat{AED}=\widehat{B}\) (1)

\(\widehat{C}+\widehat{B}=90^o\) (2)

\(\widehat{IAE}+\widehat{AED}=90^o\Rightarrow\widehat{IAE}+\widehat{B}=90^o\)  (3)

Từ (2) và (3) => \(\widehat{IAE}=\widehat{C}\) => tg AIC cân tại I => IA=IC

Ta có

\(\widehat{IAE}+\widehat{BAI}=\widehat{A}=90^o\)

\(\Rightarrow\widehat{C}+\widehat{BAI}=90^o\) mà \(\widehat{C}+\widehat{B}=90^o\)

\(\Rightarrow\widehat{BAI}=\widehat{B}\) => tg ABI cân tại I => IA=IB

Mà IA= IC (cmt)

=> IB=IC => I là trung điểm của BC

 

 

 

 

 

 

 

20 tháng 8 2017

A B C N M H

BÀI LÀM:

a) Vì tam giác ABC vuông tại A

Theo định lý Py-ta-go, ta có

BC2 = AB2 + AC

=> BC2 = 52 + 122

=> BC2 = 25 + 144

=> BC2 = 169

=> BC = 13

Vì M là trung điểm của BC

=> BM = CM = BC / 2 = 13/2 = 6,5

Xét tam giác ABC và tam giác MNC có

Góc BAC = góc NMC = 90o (tam giác ABC vuông tại A, MN vuông góc với BC)

Góc C là góc chung

=> Tam giác ABC đồng dạng với tam giác MNC (g.g)

\(=>\frac{AB}{MN}=\frac{AC}{MC}\) 

\(=>\frac{5}{MN}=\frac{12}{6,5}\)

\(=>MN=\frac{6,5.5}{12}=\frac{65}{24}\)

b) Vì tam giác ABC vuông tại A có AH vuông góc với BC

AB2 = BH.BC

\(=>BH=\frac{AB^2}{BC}\)

\(=>BH=\frac{5^2}{13}\)

\(=>BH=\frac{25}{13}\)

Vì BH + HC = BC

=>         HC = BC - BH

=>         \(HC=13-\frac{25}{13}\)

=>         \(HC=\frac{144}{13}\)

Vì tam giác ABC vuông tại A có AH vuông góc với BC

=> AH2 = BH.HC

=> \(AH^2=\frac{25}{13}.\frac{144}{13}\)

=> \(AH^2=\frac{3600}{169}\)

=> \(AH=\sqrt{\frac{3600}{169}}\)

=> \(AH=\frac{60}{13}\)

Cậu chưa cho câu hỏi câu b) nhưng có phải là: "Gọi AH là đường cao thuộc BC. Tính HB, AH và HC", đại loại vậy đúng hăm?

Bài này có thể chia 2 trường hợp nhưng tớ mới làm trường hợp MN cắt AC còn MN cắt AB thì để tớ trả lời sau nhen~