Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
a) \(\Delta ABC\) vuông tại A theo định lí Py-ta-go
Ta có: BC2 = AB2 + AC2
\(\Rightarrow\) AC2 = BC2 - AB2
AC2 = 52 - 32
AC2 = 16
\(\Rightarrow\) AC = \(\sqrt{16}=4\left(cm\right)\)
b) Xét hai tam giác vuông ABE và DBE có:
AB = BD (gt)
BE: cạnh chung
Vậy: \(\Delta ABE=\Delta DBE\left(ch-cgv\right)\)
Suy ra: AE = DE (hai cạnh tương ứng) (1)
Mà AB = BD (gt) (2)
Từ (1) và (2) suy ra:
BE là đường trung trục của đoạn thẳng AD (đpcm)
c) Vì \(\Delta EDC\) vuông tại D
\(\Rightarrow\) DE < EC (đường vuông góc ngắn hơn đường xiên)
Mà AE = DE (cmt)
Do đó: AE < EC
e) Vì \(\Delta AKC\) vuông tại K
\(\Rightarrow\) AK < AC (đường vuông góc ngắn hơn đường xiên)
\(\Rightarrow\) DK < DC (quan hệ giữa đường xiên và hình chiếu của chúng).
Gọi giao điểm của AB và DH là M và giao điểm của BE và AD là I
Vì BE là đường trung trực của AD hay BI là đường trung trực của AD
=>IA=ID và BI\(\perp\)AD
Xét 2\(\Delta\)vuông: \(\Delta\)AIH và \(\Delta\)DIH,có:
HI:cạnh chung
IA=ID(cmt)
=>\(\Delta\)AIH=\(\Delta\)DIH(c.g.c)
=>^AHI=^DHI(2 góc tương ứng)(1)
Lại có:
^AHI=^BHK(2 góc đối đỉnh)(2)
^DHI=^BHM(3)
Từ (1),(2) và (3)
=>^BHK=^BHM
Vì \(\Delta\)BAD cân tại B(do AB=DB)
Mà BI là đường trung trực của \(\Delta\)BAD
=>BI đồng thời là đường phân giác của \(\Delta\)BAD
=>^ABI=^DBI hay ^MBH=^KBH
Xét \(\Delta\)BHM và \(\Delta\)BHK , có:
^MBH=^KBH(cmt)
BH:cạnh chung
^BHM=^BHK(cmt)
=>\(\Delta\)BHM=\(\Delta\)BHK(g.c.g)
=>^BMH=^BKH(2 góc tương ứng)
=>^BMH=900
=>HD\(\perp\)AB
Mà AC \(\perp\)AB( do \(\Delta\)ABC vuông tại A)
=>HD//AC
Vậy HD//AC
a: AC=4cm
b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
Do đó: ΔBAE=ΔBDE
Suy ra: \(\widehat{ABE}=\widehat{DBE}\)
hay BE là tia phân giác của góc ABC
c: Ta có: ΔBAE=ΔBDE
nên EA=ED
mà ED<EC
nên EA<EC
d: Ta có: BA=BD
nên B nằm trên đường trung trực của AD(1)
Ta có: EA=ED
nên E nằm trên đường trung trực của AD(2)
Từ (1) và (2) suy ra BE là đường trung trực của AD
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.