Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
DO đó:ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AC//BD
Câu b cô tớ in ra đề như vậy bạn ạ. ĐỂ chiều mình hỏi lại cô ạ
a) Xét \(\Delta\) ADE và \(\Delta\)ABC có:
AD = AB (giả thuyết)
\(\widehat{A_1}=\widehat{A_2}=90^0\)
AE = AC (giả thuyết)
Do đó \(\Delta ADE=\Delta ABC\) (c.g.c)
=> DE = BC (2 cạnh tương ứng)
b) Ta có: \(\widehat{D_1}=\widehat{D_2}\) (2 góc đối đỉnh)
\(\widehat{C}=\widehat{E}\) (\(\Delta ADE=\Delta ABC\))
=> \(\widehat{N}=\widehat{A}=90^0\)
Hay DE vuông góc với BC
A B C D E N
\(a.\)
Xét \(\Delta ADE\) và \(\Delta ABC\) có :
\(AD=AB\) \(\left(gt\right)\)
\(\widehat{DAE}=\widehat{BAC}\left(=90^0\right)\)
\(AE=AC\) \(\left(gt\right)\)
Do đó : \(\Delta ADE=\Delta ABC\left(c-g-c\right)\)
\(\Rightarrow DE=BC\) ( hai cạnh tương ứng )
\(b.\)
Ta có :
\(\widehat{ADE}=\widehat{CDN}\) ( hai góc đối đỉnh )
\(\widehat{C}=\widehat{E}\) ( vì \(\Delta ADE=\Delta ABC\) )
\(\Rightarrow\widehat{N}=\widehat{A}\left(90^0\right)\)
Hay \(DE\perp BC\)
Vậy \(DE\perp BC\)
a) xét tam giác EKB vuông tại K (EK\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)\(\perp\)\(\perp\perp\) vuông góc với AB) có
EK là cạnh góc vuông
EB là cạnh huyền
Vì trong \(\Delta\)tam giác vuông, cạnh huyền là cạnh lớn nhất.
suy ra: DC > DE
mà EK = CE (tam giác ACE = tam giác AKE)
suy ra: CE < EB
a: \(\widehat{A}=180^0-70^0-36^0=74^0\)
Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)
nên BC>AC>AB
b: Xét ΔABM vuông tại B và ΔADM vuông tại D có
AM chung
AB=AD
Do đó: ΔABM=ΔADM
c: Ta có: ΔABM=ΔADM
nên MB=MD
hay M nằm trên đường trung trực của BD(1)
Ta có: AB=AD
nên A nằm trên đường trung trực của BD(2)
Ta có: NB=ND
nên N nằm trên đường trung trực của BD(3)
Từ (1), (2) và (3) suy ra A,N,M thẳng hàng
a, Xét ΔABD và ΔEBD có :
BD là cạnh chung
góc ABD = góc EBD (BD là tia phân giác của góc ABE)
BA = BE (gt)
=> ΔABD = ΔEBD (c.g.c)
b, Vì BA = BE (gt) => ΔABE cân tại B
Mà BD là tia phân giác của góc ABE
=> BD là đường cao ứng với AE (t/c)
=> BD ⊥ AE tại H
c, Vì BD // AK (gt) => góc BDA = góc DAK ( So le trong)
Vì BD // AK (gt) => góc EBD = góc ADK ( Đồng vị)
Mà góc BDA = góc EBD
=> góc DAK = góc ADK
=> ΔADK cân tại D
=> DA = DK
mà DA = DE
=> DK = DE
=> D là trung điểm của EK (điều phải chứng minh)
bạn có thể gửi cho mình hình đc ko