K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2016

A B E C D

a. xét tgiac ABD và tgiac EBD có:

góc BAD= góc BED=90

BD chung

góc ABD= góc EBD(gt)

=> tgiac ABD= tgiac EBD(ch-gn)

=> AB= EB(2 cạnh tương ứng)(1)

=> AD=ED(2 cạnh tương ứng)(2)

từ (1) và(2)=> BD là đường trung trực của AE(tính chất đường trung trực)

b. câu b là chứng minh AD<CD (nhé)

xét tgiac vuông CDE vuông tại E => CD> DE mà DE=AD

=> AD<CD

c.Vì AB=BE(cmt) và AF=EC(gt)

=> BF=BC(3)

Xét tgiac DEC và tgiac DAF có 

AD=DE(cmt)

góc DAF= góc DEC=90

AF=EC(gt)

nên tgiac DEC=Tgiac DAF(c.g.c)

=> DF=DC(4)

Từ(3) và (4) => DB là đường trung trực của CF

Xét tgiac BCF có

CA vuông góc với BF

BD vuông góc với CF(vì BD là đường trung trực của CF)

mà  CA cắt BD tại D

nên D là trực tâm tgiac BCF

vậy FD vuông góc với BC mà DE vuông góc với BC

Nên D;F;E thẳng hàng

 

 

24 tháng 5 2016

a.Xét \(\Delta ABD\left(\perp A\right)\) và \(\Delta BED\left(\perp E\right)\) có BD là cạnh chung . có \(\widehat{ABD}=\widehat{DBE}\) (BD là phân giác)

\(\Rightarrow\Delta ABD=\Delta BED\)(cạnh huyền-góc nhọn) \(\Rightarrow BA=BE\) . \(\Delta BAE\) cân tại B có BD là phân giác \(\Delta BAE\) \(\Rightarrow\) BD vừa là đường phân giác vừa là đường trung trực của AE.

3 tháng 5 2016

2 hoặc 3

3 tháng 5 2016

C2 

Xét tam giác ADF và tam giác EDC có : 

DA = DE ( Cmt ) 

DEF = DEC 

AF = EC ( Cmt ) 

=) ........ ( c.g.c ) 

=) ADF = EDC ( ...)

mà :  EDC + EDA = 180 ĐỘ

=)  EDA + ADF = 180 độ 

=) E D F thẳng hàng 

k cko mk ddi

2 tháng 5 2016

xem lại đề : sao BD _|_ BC đc?

31 tháng 5 2015

Giải:

a/Xét 2 TG vuông ABD và TG EBD ,ta có :

BD chung

Góc ABD=góc EBC (gt)

=>TG ABD = TG EBD (ch-gn)

=>BA=BE(cặp cạnh tương ứng)

=>TG ABE cân tại B.

Vì BD là phân giác của TG cân ABE nên BD cũng là đường trung trực của TG ABE.(T/c của TG cân)

=> ĐPCM

b/Trong TG DBE : DE<BE (Theo hình vẽ và Hệ quả của quan hệ giữa cạnh và góc)

Mà  DE=DA( TG ABD=TG EBD)

=> DA<BE (1)

Trong TG DBC : BC= BE+EC 

Từ (1) và (2) suy ra AD<BC.

c/Xét 2 TG vuông FAD và CED,ta có:

Góc A = Góc E (=90 độ)

AF=EC(gt)

=>TG FAD=TG CED (gcv-gcv)

=> Góc FDA= góc CDE

Mà góc FDB+EDB = 180 độ (hai góc kề bù) nên góc ADE+ góc EDC = 180 độ ( 2 góc kề bù)

=>ĐPCM

Giải đúng rồi đó nha!!! **** Giúp tớ nha bạn!!!

 

6 tháng 5 2016

Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)

Ta có 

Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)

      dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)

Vậy , suy ra AE/AD = 1/3

Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)

DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB

DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)

=> AE/AD = 1/3

7 tháng 8 2020

A C D E B F

Bài làm:

d) Từ các phần a,b,c có lẽ bn đã CM được:

\(\hept{\begin{cases}DE=AD\\FA=CE\end{cases}}\)

Xét trong tam giác DEC có: \(DE+EC>DC\) (bất đẳng thức trong tam giác)

Ta có: \(2\left(AD+AF\right)=AD+AD+AF+AF\)

\(=AD+AF+\left(AD+AF\right)\)

\(=AD+AF+\left(DE+EC\right)\)

\(>AD+AF+DC=AF+\left(AD+DC\right)\)

\(=AF+AC>FC\) (bất đẳng thức giữa 3 cạnh trong tam giác AFC)

=> \(2\left(AD+AF\right)>CF\)